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ABSTRACT 

A new dvnamic programming method is developed for numerical optimization of recursive systems of 

equations, in which choice variables are continuous, and the choices made determine the allowed choices 

in subsequent stages of the problem. The method works by dynamically creating bubbles, or subsets, of 

the total search space, allow^ing the indexing of states visited for later use, and taking advantage of the 

fact that states adjacent to a visited state are likely to be visited. The method thereby allows the search 

of parameter spaces far larger than would traditionally be permitted by computer memorj' limitations. 

The method allows an infinite planning horizon, and tests at each stage to determine whether further 

optimization is worth the costs, reverting to a default choice when optimization is no longer profitable. 

The method is applied to the quantitative genetics problem of finding the optimal selection choices for 

quantitative traits using an identified gene and the present discounted value of all generations. The 

method is then applied to the Estrogen Receptor Gene (ESR) in swine to find the economic \-alue of 

genetic testing for this particular gene. 
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CHAPTER 1 INTRODUCTION 

Recent years have seen rapid progress in computational technology, genetics, and the animcil breeding 

industry. While computer speed and storage have increased, advances in molecular genetics have made 

it possible to test indi'vidual animals for the presence of specific genes, while at the same time, the 

breeding industry- has become more concentrated. These advances can be combined to find more efficient 

methods of improving genetic progress within livestock breeding herds. Particularly, refinements of the 

long-established method of dynamic programming to search disjoint subspaces allow the use of genetic 

testing for individual genes to maximize genetic progress, even when such maximization is analytically 

impossible. 

Within living memory, swine were bom, raised, fived, and slaughtered primarily on the family farm. 

They were mostly bred with the fcirmer's own herd, or with an impressive hog from another nearby 

farmer. Slaughter would take place on the farm, where the assorted parts of the carcass would be 

preserved for personal consumption. 

At the turn of the century, the majority of hogs were sent by rail to a few regional slaughter and 

packing houses to feed the growing population of the cities [Vertical Coordination, p. -i-5|. Rather 

than feeding the family, raising hogs for market was a way to begin or expand a farm with relatively 

smcdl amounts of capital. Still, though, a herd could be maintained and improved by avoiding obvious 

inbreeding and breeding the sows to the sires with superior '"phenotypic" characteristics, the outwardly 

observable traits. 

The world has changed since then, and hog production with it. Increasingly, additional traits of the 

hog were seen to have a genetic basis. Some were to be avoided by careful breeding and slaughter, while 

others were to be sought out. Research has found better ways to breed the hog, and the predominant 

family operation of fairow to finish is being replaced by a system with separate operations for farrowing, 

nurseries, and finishing [Vertical Coordination, p. 4|. For some, it became profitable to buy feeder pigs 

to raise for market rather than breeding their own, while for others it was profitable to raise and sell 

feeder pigs. 
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While the raising of commercicil swine remained primarily a fajnily operation, the production of 

breeding stock rapidly became a concentrated industry. Today the market is dominated by breeding 

companies, each aggressively marketing their own brand of breeding pig. These companies are constantly 

positioning for market share, and can either commcmd a better price, take a larger share, or both, by a 

relatively modest genetic improvement. While a tenth of a percent of additional meat per hog may not 

have been noticeable to a fanner early in the century, today's commercial farmers see an effect similar 

to Rockefeller's reducing the number of tacks used in barrels: a fraction of a penny per hog can add 

up. Just as Rockefeller saved $60, 000 per year by reducing the number of tacks per barrel by one, 

commercial swine operations caai potentially reap a measurable profitby the shghtest improvement-and 

suffer measurable losses for the slightest defect. 

The market has changed further since then. While artificial insemination of swine was not practical 

even ten years ago, today an increasing number of hogs are conceived this way [Lawrence 1600]. While 

sales in the past were based merely on animal weight, today price reflects carcass quahty considerations. 

Statistical sampling and proxy measures such as the thickness of fat on the back of a hog create price 

premiums, whereas excess fat will bring a penalty. In a multi-stage operation it is now necessar>" for 

each majiager to be able to assess the quality of both inputs and outputs, creating further competitive 

pressure for the industries. 

WTiile genetics have been indirectly recognized as affecting the performance of animals long before 

Mendel's age, resulting in selective breeding, the development of modem genetics and molecular biolog\-

has meant that an increasing number of genes that affect quality in various manners have been identified. 

The estrogen receptor gene (evaluated in Chapter 7) is known to increase litter size [Rothschild 99|, 

while a stress gene causing fainting cind reduced meat quality has also been identified [Eikelenbroomj. 

Not only are these genes recognized, but an individucil animal may be tested for the presence or absence 

of the gene prior to breeding to avoid less desirable progeny. 

While the famous example of Mendel's Peas concerned a qualitative trait, or one that is either present 

or not present, today most genes of interest in hvestock genetics concern quantitative traits, or those 

which take a range of values, such as animal size. Rather than fully governing outcome, a gene may be 

one of thousands which, along with the environment, contributes to the size of an animal, some with 

relatively minor iiidividujil effect, and others with a strong effect. If these more important genes can 

be recognized, the possibility exists of identif}ing a better rule for selecting cinimals to breed, yielding 

an increase in quality without an accompanying increase in the regular costs of operation; though there 

will, of course, be a cost to perform the genetic testing.. 
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Improved selection decisions have a direct economic impcict. An improvement in the current gener­

ation also improves all subsequent generations-an extra 1% profit from improved genetics in this year's 

production raises adl future years, which in turn increases the Vcdue of the enterprise by 1%. That is, 

the change is permanent-as is the increase in the value of the enterprise. More importantly, with the 

improved genetics, the wealth of the operation is improved by a quantifiable amount. 

Current breeding methods cire based on phenotypic information, the observable traits of an animal. 

From this information, a breeding value is estimated, or the statistical expected value of the collective 

effect of the genes passed by the animal to its progeny [Falconer]. The goal is to maximize rates of genetic 

improvement, an approach which is closely related methodologically to that of optimizing profits: in 

fact, it is a subset. In the simplest case, revenue is strictly a multiple of the quantity produced-pounds 

of milk, for example-and the cost of testing is very low. In these cases, revenue is a simple multiple 

of the breeding value, production costs axe taken as constant, and the optima for genetic improvement 

are also the economic optima. 

More complicated cases can be handled as well. Quality as well as quantity can be handled: leaner 

pork may vield a higher price per hundredweight. Sales volume may depend upon quality: there is 

more demand, as well as a higher price, for superior semen for axtificial insemination. Finally, there 

may be a "brand" premium in having fixed a gene as present in the breeder's animcds that exceeds the 

direct \'alue of the gene. As with revenues, costs may not be constant. It will frequently be the case 

that testing for the presence of genes in individual animals imposes a significant cost, and that the 

number of generations to test becomes an axlditional variable to optimize. The quality of the animal 

may increase or lower production costs, as well: a sow with larger litters may have increased veterinary 

costs, partially offsetting the gains, while optimizing for disease resistcince could be expected to reduce 

the costs of raising the breeding herd and commercial animals. 

1.1 The problem 

WTiile Mendel created a discipline with wrinkled and unwrinkled peas, today's geneticist faces more 

complex problems. Creatures have many traits, most of which axe influenced by large numbers of genes-

enough that they may frequently be treated as having infinite count. In recent years cin increasing 

number of these genes have been identified. Moreover, they act in concert with a large number of as 

yet undiscovered genes. Given that a gene contributing significantly to a quantitative trait of interest 

can be detected, it seems likely that this information can be used to improve the herd. Particularly, the 

best possible improvement using the information will be at least as good as without the information. 
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The question is then, how to use the genetic information. The question as to how to use the infonnatioa 

is not easy; the first proposed rules, using "genotypic selection, " yielded the result that in the long term 

genetic improvement decreases from the mass selection values [Gibson], those obtained by breeding the 

animals with the greatest observed values for the trciit in question. 

If a gene is designated as B when the desirable allelic is present, and b when not present, there are 

three "genotypes, " or types of animals: bb, bB, and BB. A naive approach would be to breed only 

the BB's. However, this is far from optimal. Suppose that each B is worth 1, and that the unknown 

genes jield a standard-normal distribution for the treiit. Approximately 5% of the 66's will draw a \'alue 

greater thain 2 from the distribution, while half of the BB's will draw a negative number. The 5% of bb's 

worth greater than two are clearly more desirable than the SB's which draw a negative value, which 

axe still worth less than 2 after adding the effects of the BB; it is therefore desirable to keep some of 

each [Freund, p. 242]. 

The question remains, however, as to the optimal combination. By selectively breeding, and with 

a litter size of 10, a gene can be brought from a frequency of 5% to 99% in about five generations as 

seen in the breeding programs of Appendix C. This means that if the program were to last for ten 

generations, with only the last generation of concern, the first five could focus on merely looking for 

high values from the normal distribution, with the last five focusing on increasing the frequency of the 

BB gene. This is not the optimal pattern, but is offered to show that the animals without the favored 

gene remain of value in maximizing the trait in question. Further, a choice must be made as to which 

BB's to breed. 

While many classes of breeding rules exist, those considered in this study will select animcils by 

truncation selection-, within each genotypes, such as bB: All creatures with an estimated breeding value 

in excess of the truncation point for that genotype are mated reindomly amongst all breeding creatures. 

Further, it will usually be assiuned that the herd is arbitrarily large. As such, the mean breeding value 

in the following generation, as well as all other variables of concern, are degenerate random variables 

[Davidson, p. 349]. 

Preliminarj' work has already been done in this area. Dekkers and van Arendonk considered the 

case of a single quantitative trait locus, or QTL, at which a detectable gene is located, and used optimal 

control to find the maximum improvement in the final generation of an infinite herd. [Dekkers 98) 

Dekkers has also solved a similar case with differential selection by gender in unpublished research. 

'Faster progress could be made by selecting mates. However, this would introduce concerns about inbreeding, making 
the problem far more complicated. It is prudent to first solve the simple problem and then approach the more complicated 
problem with the knowledge gained. 
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Two basic scenarios, a small finite number of periods, and an infinite horizon using present (dis­

counted) value, will be used in this research, and each will be excimined both with optimal control 

and numeric methods. In the simplest model, only the genetic improvement over time is considered. 

This problem is computationally harder, due to stilF Hessian matrices, cind is of vcdue in testing the 

robustness of the algorithms. Furthermore, an analj-tic solution is known from the work of Dekkers and 

van Arendonk [Dekkers 98j, and allows verification of the cdgorithm's behavior prior to analysis of cases 

with no analj-tic solution. 

1.2 The swine commercial and breeding industry 

The pork production industry in the United States is becoming increasingly concentrated, and 

increasingly sensitive to costs. From a mere 7% in 1988, firms producing 50, 000 or more hogs per 

year marketed 37% of the total output, more than a third, in 1997 [Lawrence 1599]. The same study 

found that this structural change is likely to continue, with growers in all size categories planning on 

e.xpansion. The increased supply will put greater pressure on profit racirgins, and even a slight edge 

might be the difference between remaining in production or leaving the industrj*. 

Production of breeding animals has become even more concentrated. The commercial swine industr\-

has evolved from breeding females being raised on the farm to being raised in specialized herds and sold 

to commercial producers or replacement feeders. 

1.3 Economic model 

The breeding model trzuislates directly to an economic model by incorporating the present value for 

a finite number of generations. Revenues are the present discounted value of some function, possibly 

linear, of the trait in question plus any brand premium. 

where p is the discount factor, the revenue It reflects the value of animals of the grade indicated by 

the average polygenic breeding value, in generation t which depends upon gene frequency pt, the 

fraction of the loci in the herd that have the gene, and other factors, and the brand premium S is an 

amount, possibly zero, paid beyond the revenue at that same level when the gene is fixed, i.e., gene 

frequency pt = 1. 

Costs may be divided into three significant areas: fixed costs, which will include costs relating to 

the size of the herd, variable costs based on the quality of the herd, and testing costs. As it is assumed 

CO 

(1 .1)  
4=0 
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that the size of the herd is already chosen, and that a full herd will be kept, fixed costs may be ignored 

in all cases, as they are the same. Cost is discounted in the same manner as revenue. 

Quality cost is a maxginal cost, measuring from the fixed cost, that may be either positive or negative. 

Disease resistance, for example will reduce veterinciry costs, yielding a negative quantity cost. On the 

other hand, increasing Utter size will increase costs, as there are more animals to feed and house. This 

increased cost, however, should be more than offset by the increased revenue firom the extra animeds. 

Similarly, breeding for increased milk yield or animal size may cause the animals to eat more, raising 

costs while producing additional salable product. 

The final type of cost is that of testing for the gene. If testing were to continue forever, it could 

be treated as a fixed cost of the enterprise. However, this is unlikely: unless testing can be done by a 

casual visual inspection, such as a different color of animal, it will have at least some cost. Once the 

gains from use of this genetic information, as compared to the program which would be used without 

the information, exceed the cost of testing, testing will cease. Therefore, the breeding cost is a variable 

cost that is expected to change permcinently to zero at some point in the future. 

Combining these revenue and cost streams yields the total value of the breeding enterprise. 

which is to be maximized, where p is the discount factor. Ft is the fixed cost in that time period, Q the 

quality cost, and T the cost of testing. Only models in which T depends solely upon pt until testing 

is halted, after which it becomes 0, will be considered; strategies such as testing alternate generations 

will be ignored. 

Ver\' little consideration will be given to purely genetic models without economic consequence. In 

fact, there is only one possible genetic question that can be answered, namely "What is the greatest 

genetic progress possible in iV generations?" where A' is a fixed number. Any other question must 

involve a state from at least two generations after the initial state, which means that these must be 

weighted. Baxring Divine Revelation, the question of how to weight generations is inherently a question 

of relative economic \^ue. 

1.3.1 Ansdytic solutions 

In the simplest case, with a finite horizon, Dekkers and van Arendonk have used optimal control 

theory to show a partial analytic solution, solving recursively from the final period [Dekkers 98j. .A.n-

alytic solutions were found for the control equations, and iterative solutions applied to produce the 

( 1 . 2 )  
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optimcd breeding values. The In section 4.2, it is shown that an cinalytic solution does not exist for even 

the simplest case with an infinite horizon. While values for the variables which maximize the objective 

function certainly exist, the equations have one too many variables to solve. 

1.3.2 Computational solutions 

In the case of a finite number of generations, simple second order methods are inadequate to solve the 

problem. Unpublished work by this author has found that choices made in the eaxly generations have 

ver\- little weight in the final generation, and the Hessian matrix becomes stiff. These could conceivably 

be solved by augmented Ne^vton methods, a genetic algorithm, or both. However, the \.-arious Newton 

methods require that deriratives of the objective function exist in closed form, which will not always 

be possible for genetic problems, while a genetic algorithm solving the simplest version of the problem 

was unacceptably slow. taJdng several hours. 

The infinite horizon presents a simpler problem in some ways. The discounting of the future reduces 

the stiffness found in the simple model-but w^ill maJce the 'iar off" generations, rather than the early 

generations, nearly irrelevant. The key is in determining how many generations are necessarj' to be a 

"large number."' That is, is it fifteen, a hundred, or five hundred generations that must be considered 

to approximate infinity? 

Two broad categories of computational solutions are sought: partial analytic solutions which can be 

completed with standard numerical methods, and "brute force" methods which can handle methods not 

at all amenable to anailytic solution. The first category* is preferable when possible, but would require 

analytic work for each variation of the problem proposed. However, solutions from these methods 

can utilize known and established methods to complete problems, and will be certain of achie%'ing 

optimcd solutions. Unfortunately, such partial solutions generally do not exist for problems of economic 

interest. Accordingly, finding methods for the second clciss are also desirable, and will be the focus 

of this dissertation. In some cases, it may be possible to provide a proof of convergence for a class 

of problems, and in others it may not. However, the methods likely have \'alue even when proof is 

impossible: while it may not be possible to guarantee optimality, it remciins simple to compare the 

proposed solution to the best existing solution-for a breeder, an improvement upon current output is 

valuable, even if there may be an unknown better improvement. 

1.4 Objectives 

The objectives for this research are to: 
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1. develop aji approach to quantitatively evaluate genetic improvements in a swine herd. 

2. develop an approach to assess the economic value of genetic information on identified genes. 

3. provide an application of the program to a specific case of an identified swine gene. 

To achieve these objectives, the following sub-objectives must be accomplished: 

1. dev-elop a concise formulation of the recursive optimization problem. 

2. develop an algorithm or methodologj- which can find the optimal values for the control variables. 

3. provide an implementation of this algorithm for the specific case of maximizing the present dis­

counted value of a herd in which one or more QTL's, or Qucmtitative Trait Loci, have been 

identified, taking into consideration the cost of testing. The program code for this algorithm 

should be as modulax as possible to allow for adoption to other problems. 
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CHAPTER 2 GENETICS 

Some standaxd assumptions axe made while working with theoretical genetics. These assumptions 

will generally apply to ver\' Icirge groups as well. Fundamentally, they are large sample results from 

the Central Limit Theorem, at such a sample size that \'axicuice of the population mean has dropped to 

zero. 

2.1 Structure of the model 

Given an initial population in period 0, it is sought to maximize the average phenotypic value P of 

the animals T generations later, where the phenotypic value is the total effect from genotype g for an 

identified QTL, polygenic value ,4.. and environment Ez 

P = g A-ir E (2.1) 

E will be cissumed to be 0 in all cases. 

2.2 Some necessary breeding terms and concepts 

2.2.1 Truncation 

Selection is by truncation of the breeding intensity I .  For each m, a cutoff point X m t  is chosen. 

Animals with limt > are selected to breed for the next generation, while the rest do not breed. The 

breeding animals then randomly choose mates. This cutoff point can also be expressed as a fraction. 

fmt, which describes the portion of animals of that type bred. Then 

fmt = I - FmtiXmt) (2-2) 

where Fmt is the cumulative distribution function for Ifmt-

"•Choosing mates for them increases problems with inbreeding of other genes. 
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2.2.2 Maiss selection 

In mass selection, b-m = h- for all m. Thus 

/  =  +  { P - g m )  =  h - P  (2.3) 

The genotypic information is simply ignored, and the same truncation point is used for each genotype.. 

This is the simplest selection method. 

2.2.3 Genotypic selection 

For genotypic selection, bmt = 1 for all m. This Ls an initial attempt to take the genotypes into 

account. Thus 

Genotypic selection is the optimal behavior if only a single breeding is to occur. 

2.2.4 Disequilibrium 

After a selection with different cutoff points for the different genotypes, a negative correlation 

between the polygenic values and the major genotj-pes of parents will exist. This is considered at 

length in Chapter 5. 

2.2.5 Polygenic variance 

Simple models assume that changes in the mean breeding value are small, and that therefore changes 

in the \'ariance of the breeding orders are of second order smallness and need not be considered. However, 

the models considered here attempt to majcimize the change that can be made, and this would appear 

to no longer be a reasonable assumption. The changes in the mean are a function of the variance. If 

the %-ariance drops significantly due to selection, gains from selection will be overstated, as polygenic 

improvement is proportional to polygenic variance. 

There are two soinrces of chemge to the variance of the polygenic distribution. The first is the Buhner 

effect [Buhner, pp. 126-131], which is a reduction in variance due to gametic phase disequilibrium. This 

effect can be calculated as 

I = IfZm + ft" (-P - gm.) = (1 - h-) gm + h-P (2.4) 

o'st = Pt (1 -Pt) 
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where E [] is the expectatioa operator. The total vciriance can be expressed as 

0".4t = -t- O-pt + '^PtO-gtCTpt (2.8) 

where the subscripts A, g, and p indicated the breeding, genotypic, and polygenic distributions. While 

this can be taken further, it suffices for the present to obser\-e that the variance is changing due to 

selection, and that the simple model does not account for this. Additionally, Bulmer has shown that 

while \'ariajice decreases due to selection, the decrease is asymptotic to a non-zero level in [Bulmer 711. 

.\s such, assuming that such an asvTnptote has been reached in the existing herds is not a particularly 

strong assumption. This effect is also considered in [Dekkers 92j. 

2.3 The breeding value and total genetic value 

There are two contributors to the breeding value: the major genes, and the polygenes. .A.s the 

population is arbitrarily large, each range of vcdues for P is present in its statistically expected \'alue. 

It is assumed that it is the mean of the phenotypic value for the entire population that is of interest, 

rather than the trcuts of individuals. In a large population, the average breeding value and average 

phenotypic value are equal. For example, it is the milk production of a dairj' herd that is most rele\'ant, 

rather than how much a particular cow produces. The discussion that follows considers only a single 

locus with two alleles, for the sake of simplicity, ajid largely follows the development and terminolog>-

in [Dekkers 98j. The concepts carry over directly to the case of multiple loci. 

Genotypes are tagged by the variable m, taking the values 0, 1, and 2, referring to the number 

of times the favorable allele is present, refers to the genotypic value of the gene, and takes the 

values {—a,d,a} for m = {0,1,2}. In the case of additive major genes, which will be the primary 

case considered, the "dominance" d is zero, meaning that each copy of the gene makes an identical 

contribution. Chapter 7 will consider the asymmetric effects for the Estrogen Receptor Gene, for which 

the second copy makes a far smaller contribution. 

Allowing i to index individual animals, the polygenic breeding value of an animal can be estimated 

by Aimt, based upon the phenotype and heritability the heritability of the trait, and not accounting for 

the major gene. Aimt is represented as a deviation from At, and can be estimates as 

iim£ = h-{P - gm) 

where P is the observed phenot>-pic value of the animal, and h' is the heritability, or the portion of 

polygenic value which is passed to the next generation. Letting bmt be a weight for genotype m in 
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generation t, the animal has a selection value 

limt — bmtffm imt (2.9) 

For genotj^pic selection, bmt — 1- Each of the three types has a different mean, but the same \^iance. 

as seen in Figure 2.1. 

For generation t, the frequency of the major gene is expressed by pt • A value of 0 would mean that 

the entire population were homozygotes without the favorable allele, and a vEilue of 1 would meaji that 

the entire population had it twice. With the same number of males and females selected (each animal 

b r e e d s  o n c e ) ,  a n d  r a n d o m  m a t i n g ,  t h e r e  w , - i l l  b e  p i  h o m o z y g o t e s  w i t h  t h e  f a v o r a b l e  a l l e l e  t w i c e  ( B B ) .  

2pi(l —pf) heterozygotes {Bb and bB), and (1 —pt)~ homozygotes without it {bB). For d equal to zero, 

an assumption that will be kept for simplicity until Chapter 7, the average polygenic breeding \3Iue of 

the population as .-It, the average breeding value can be expressed as 

Combining, the state of the system at time t  is fully described by the values {.-It ,pt, , j X p t  jwhere jipt 

ajid are the mean and variance of the polygenic distribution at time t. If disequilibrium is considered, 

then this set must be expanded to account for the fact that the polygenic distribution is different for 

each of the three genotypes, and the set becomes Finally, if optimization is being 

done with a finite time horizon, the number of remaining generations becomes important, and T — t is 

needed as well. 

The problem is then to choose values for bmt to maximize Gt-, which is homomorphic with choosing 

-Cmt or or alternati%'ely with choosing selection intensity imt, where 

Gt — a{2pt — 1) + .4.t (2.10) 

.Also, Amt refers to the average polygenic value of animals with major genotype rn in generation t. 

(2.11) 

and Zmt is the height of the standard normal distribution at Xmt [Falconer]. 
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Figure 2.1 Three distributions with the same \'ariance 
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CHAPTER 3 DYNAMIC PROGRAMMING 

3.1 Introduction 

The use of dynamic programming in sohing problems with continuous variables has generally re­

quired that the discretized choice space be compact, or at least contiguous. This shcirply limits the 

allowed dimensions-for example, five [0,1] variables with a grain of .01 yield 10^° potential states, 

requiring about forty gigabytes of temporaxy storage for just a single floating point variable for each 

state. 

By usiag an initial estimate, which need not be close to correct, and forming n- dimensional bubbles 

around each point in the tentative solution, storage requirements are reduced to a practical level. With 

this approach, long time horizons, even those appro.ximating an infinite horizon, become practical on 

modem desktop computers. 

An example from selection on a known gene for a quantitative trait in animal breeding is used to 

illustrate the method. 

3.2 The class of problems 

The method seeks to solve multiple stage problems in which: 

1. The initial state is known, 

2. A finite number of state vcuriables exists in each stage, 

3. The allowed states in any stage are determined solely by the state in the prior stage, 

4. It is possible to specif' the contribution of a given stage's state to the toted objective function 

without consideration of prior or subsequent states, and 

5. A starting solution is available such that there is a path which is monotonically increasiag in the 

objective function through the state space between this stcirting point and the optimum. 
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Also of interest axe featvires that are not required with this approach, including 

1. Derivatives of the objective function and transition rules. 

2. Continuity of the objective function function, 

3. A convex search space, 

4. A known stage at which to stopping. 

It should be noted, however, that while the third is irrelevant to the method, the first two are useful if 

available, and the method can determine the fourth if it is not known in advance. 

3.3 A brief history of dynamic programming 

D>-namic progrEinmiing, in and of itself, is not a new concept. It has been used as a computational 

method since the 1950's [Bellmanj, but its ability to solve problems is highly dependent upon available 

processing power and fast storage (cache or core memorj-). 

Dyncimic programming is used in programs that have a fixed number of available states, and in 

which the "history" of the problem, or the path by which the state was reached, is irrelev-cint. Dynamic 

programming can thus be used to solve policy questions, such, as the order of apphing treatment to 

fields, in which both which steps to take as well as which order to take them in cire considered [Larson, 

p. 8j. The vcdue of each state is known, and therefore once both steps of the tentative solution "apply 

forty tons of phosphor, then plant com" is calculated, considering the solution, "apply twenty tons of 

herbicide, then forty tons of phosphor, then plant com" requires only calculating the effect of the first 

step, and then using the already calculated value for com. 

While the problems soluble by dynamic programming are inherently discrete, there is a long history 

of its use in solving continuous problems. This is done by the expedient of discretizing the problem, 

allowing only certain states, as illustrated in Chapter 5.2 of Bertsekas, among others [Bertsekas]. In some 

cases, this approximate solution is sufficient. For excunple, if the problem involves a [0,1] choice vcuiable, 

and knowledge of the solution to within .01 is sufficient, then only 100 states need be considered. If such 

an cinswer is not precise enough, the first solution can be used as a center for a search over a smaller 

area with a finer grid, a process known as "successive approximation, " a method wliich is also widely 

documented [Boudarel, Chapter 4.4]. The wide grid method is named for building an initial wide grid, 

in multiple dimensions if necessary, about cill possible solutions, and using successively smaller grids 

about each approximation. 
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However, published numeric solutions almost universaJiy consider compact search spaces (those 

which are are both closed and bounded [Varian, p. 478])- The few examples of non-compact spaces 

have all used contiguous spaces; a method which isnot appropriate for the breeding problem considered 

Ln this study. The lack of compactness is not a problem in eind of itself; such spaces are used in the 

method most closely resembling the approach used here, the relaxation method [Boudarel]. This method 

uses an initial state cind trial solution, and allocates storage space around each state on the trajecton.-. 

However, this method relies on fixed boundaries for these states, and cannot handle the situation where 

a choice of state determines the boundaries. 

Finally, a broad class of problems can be solved recursively: those which can be reasonably approx­

imated as lineiir-quadratic systems, in which control is a linear function, and the objective function 

is quadratic [Chancme], [Pouliot]. The genetic problems of interest don't even come close to linear 

quadratic-with n generations remaining, the objective is a multinomial of order 2n in 2n variables, 

even for the simplest case. Furthermore, the control \'ariables aren't even vaguely linecur; among other 

problems, they involve the inverse of the normal distribution. 

3.4 A general model 

Before discussing the requirements, it is useful to have a generalized mathematical formulation of 

the model. It is assumed that the model can be summarized as 

where - is the total discounted objective function over all stages, p { t )  is the discount factor for generation 

f, V" is the objective function, 5 the state, and c the action chosen. Unless otherwise stated, it will be 

assumed that the discount factor remains constant, 

(3.1) 
t=o 

P (0 = p" (3.2) 

and that the objective function for all stages is constant, 

V { t , S )  =  V { S t )  

3.4.1 The steirting solution 

All that is required of the starting solution is that it be a legal series of transitions, and that there 

be a path between this series of actions em.d the optimal choice which is monotonically increasing in the 
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value function. While a better stEurting point will conceivably speed the search, it will only affect the 

first iteration, as the first iteration reaches the same optimum irrespective of the starting point. 

3.4.2 Allowed states and choice spaces 

In cill cases, there is a choice set Ct at each time stage consisting of the possible transitions from St 

to Sf-f-i, where Ct itself is determined by choices made in prior stages. It is possible to express this set 

in terms either of choices or successor states as needed, and the two specifications axe equivcilent. That 

is, if Ct is the set of choices, or action set. avcdlable at stage t. and ct is the choice actually made. Ct 

itself is determined by (cj : s < t}, as in Figure 3.1 

Ct ~Ct (ct_i.!Cf_i (ct_2 ---coICo)) (3.3) 

This compUcates matters, as a change at time s means that there is not only an interaction between Ct 

and Cj. which can be handled by considering cross partial derivatives; but that c, actually determines 

C't, and thus to speak coherently about effects from changing requires calculating the changes in 

{ctXt '• t > s} that result. 

-A.lso. it is assumed that the choice sets resulting from alternative choices made in prior stages are are 

not completely disjoint. If this is not the case, then there is no point in using dynamic programming, the 

strength of which hes in reusing calculated states. Conversely, if the successor choice sets are identical 

for all choices, or even known in ad\'ance, the method herein is urmecessar}-; its purpose is to adaptively 

handle subsets of a space too large to search. 

3.4.3 Contribution to total objective function 

The requirement that the contribution of a given stage to total objective function be known Ls 

almost trivial: as calculation of the value of the state entails finding the values of all successor states, 

the contribution is simply the sum of these states. More generally, it is assumed that there are two 

components to the objective function, a cumulative portion and a trcinsitor}' portion. The cumulative 

portion will remain regardless of future values of the state variables, while the transitorj- portion depends 

solely on the current values of the sytate variables. 

For example, suppose a pedestal is to be built by stacking books of different sizes, as in Figure 3.2. 

and that both the height and the surface area at the top of the pedestal contribute to the quality of the 

objective fimction. Each book adds to the height, a ciunulative effect; but only the top book determines 

the surface area, a transitory effect lost when the next book is added. However, the transitory effect 
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t+l 

't+1 

Figure 3.1 The choice made from choice space Ct at stage t determines the choice 

space avciilable in period i + 1.} 

Polttical Etnics 

I Roman History | 

Breeding 

Dynamic Bubbles 

Figure 3.2 Each book in a stack makes a cumulative contribution to the height. 

but surface area is transitory, determined only by the topmost book. 
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is not totally irrelevant: the size of any given book determines the possible sizes of books which may 

become the next level; a book that is far larger than the book immediately below will not baiance 

properly. 

In the genetic problem, increases in .4( axe cumulative; each future generation is increased by the 

same amount, while increases in pt are transitory-only the current value of pt is importajit. 

3.4.4 Meiking the infinite horizon finite 

It has been noted that the method herein can handle an infinite planning horizon. There are three 

ways in which this caji be done. 

3.4.4.1 Discounted value below machine precision or other tolerance 

This is the simplest and least elegant method. Given that machine precision is finite for floating 

point math, and assuming that the sum is finite, eventually the present discounted value of a distant 

stage becomes indistinguishable from zero; and the method can be stopped. A sufficient condition for 

a finite sum is that there exist a finite N such that for all stages later than iV, the increase in the 

undiscounted value of the stage from the prior stage be less than the discount rate, an assumption that 

will be maintained throughout this work. Alternatively, a cutoff value which is miniscule relative to the 

objective function can be used; for example, in a financial model, changes smaller than a penny caiuiot 

be measured, and differences in the present value of less than a penny cannot be measured. 

3.4.4.2 Repeated states 

Another method, available for some classes of problems, is to keep a history of ancestor states. Given 

the the irrele-vance of the path by which a state was reached, any state that either chooses itself directly 

as a successor state (a steady state), or chooses a successor that ultimately returns to the starting state 

(a cycle), will do so forever, and indicates the end of the seaxch. 

3.4.4.3 Optimization costs exceed benefits 

This is the method that will genercdly be considered in this study. Again assuming a finite present 

value, if there is a "default" behavior specifiable for the system, and some cost, such as an information 

cost, for choosing an optimal path, at some point the cost will exceed the gciins from testing, and the 

optimal choice is to switch to the default behavior. 
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3.5 Bubbles in n-space 

It is an assumption of the method that the total search space is so large that it is impossible 

to allocate resources representing the entire space search, whether or not all states are ultimately 

considered. Furthermore, it is assumed that the space is large enough that it is not possible to allocate 

pointers for each possible state, each of which taice a single machine word. For graphic simplicity, 

consider a simple case of three variables in the (0,1) range, for each of which the objective function is 

an increasing function during any stage. It seems reasonable a priori to expect that each of the three 

will asjTnptotically approach I in any good solution,. 

With an initial trial solution as in Figure 3.5, and a granularity of .01 for each of the three variables, 

there axe 10® possible states, a manageable number. However, the researcher is likely to desire a finer 

granularity, .0001, or even .000001, requiring 10^" or 10^® states, respectively. 

However, the changes in each variable from stage to stage are typically far larger than the grain; 

there are large rzmges in each variable which axe known ahead of time to be unlikely to be reached. 

Instead, some region, a hypercube in JJ^axound each point of the trial solution is most Ukely to be 

reached, as in Figure 3.4. While there is no a priori reason to assume a hypercube, this cube can be 

chosen so as to include any size and shape of region. 

If reasonable a priori bounds can be placed on the size of these cubes for each step, and this region is 

divided into ten possible \'alues for each of the three Vciriables, each such bubble contains only lO^states, 

which is manageable for even a large number of generations. Figure 3.5 shows five possible states for 

each state variable. If the trial solution is "'close enough" to the optimal solution for that grain, or if 

the bubbles are large enough, the solution at each point will be within one of the divisions of the cube, 

and the dynamic programming approach would then seem to be successive steps with finer grain and 

smcdler bubbles in each stage. For example, if the solution shown by the dashed Une in Figure 3.6 is 

found to be the best, from a prior solution as shown by the solid line, smcdler bubbles and bubblettes 

may be found around this new tentative solution, as in Figure 3.7. To this point, it has been assumed 

that the each step will land in a known neighborhood, that of the bubble previously associated with 

that step. However, the dashed line lands in the "wrong" bubble, while the dotted line fails to land 

within any bubble. 

This process would be repeated until the grain is sufficiently fine that the solution remains stable, 

or does not change, as the grain is further reduced. 
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Figure 3.3 Initial trial solution for two stages. The arrows show the progression 

in three state variables from the initial state to the states comprising 

the initial trial solution. 

Figure 3.4 Partition of space near trial solution into disjoint bubbles. 
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Figure 3.5 Division of bubbles into bubblettes. 

Figure 3.6 With, the bubbles centered around the initial solution shown by the 

dashed arrow, the sohd arrow shows a potential new solution or trajec­

tory through the search space. 
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3.5.1 Missing the bubbles 

The foregoLng example has a critical impUcit assumptioa: that the number of steps to the solution is 

known-that is, that the problem is known to have T stages, rather than the optimal choice of T being 

part of the problem. This is important since the bubbles are identified with a specific step. It is entirely 

possible that the bubbles for different stages overlap, but this is not a problem. The problem, rather, 

is that a tentative solution step may step outside of the 'iaext" bubble, as in Figure 3.8. Until now. 

it has been assumed that each step will land in a known neighborhood, that of the bubble previously 

associated with that step. However, the dashed line in Figure 3.8 lands in the "wTong" bubble, while 

the dotted line fails to land within any bubble. 

This is not a trivial problem, and addressing it is the essence of the method herein. The essence of 

dynamic programming is to reuse previously calculated states. However, the bubbles are used in this 

approach precisely because the number of potential states is too great to store, let alone calculate. If a 

step is made outside a bubble, it would seem likely that the next step is also outside the corresponding 

bubble. Each of these will require calculations of multiple possible states for comparison with each 

other. Some method must be found to index or search through the bubbles, so that once a new bubble 

has been created, later steps can find it and take advantage of its calculations. 

Another source of misstep can come with a change in the number of stages in the solution. For 

example, if the initial solution takes fifteen stages before reaching a state in which testing is not prof­

itable, it may be that a path is found which reaches this level in fourteen generations. This may mean 

that the thirteenth step proceeds to the bubble previously associated with the fifteenth, as with the 

dashed line in Figure 3.8. 

3.5.2 A structure for the bubblettes 

Before turning to the bubbles, it is necessary to consider the nature of the bubblettes. 

A bubblette is a firagment of a bubble-a piece representing a single potential state that, with other 

fragments, can form a bubble in space, as described below. This fragment represents a point in state-

space, and all of the information relevant to that state. Particularly, this information must include 

1. The location of the state. 

2. The next state that should be chosen from the state. 

3. The value of stepping to that state, so that it is not necessary to recalculate if the state is 

considered again. 
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Figure 3.7 New disjoint bubbles and bubblettes axe created, at a finer grain and 

centered about the best solution from the previous iteration. 

Figure 3.8 Two types of bubble "miss." 

The solution indicated by the dotted line enters a "wrong" bubble, while 

the dashed line does not enter any existing bubble. 
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Depending upon the problem, it may also be valuable to include 

1. Any other \^ariable. such as the true choice variables (if not the sjime as the state variables), which 

are needed or desired in making the transition. 

2. .A.ny hints as to what course of action should be tziken from prior iterations of the algorithm. 

The first will likely be handled by whatever method is used to store and retrieve the bubblette; it is the 

address of the bubblette. The second and third are the essence of the dv-namic programming method: 

once the act to be taJcen from this state, and the value of that ax:t is ccdculated. this data should be 

available for any future solution that considers this point. The fourth may or may not be necessarj-, 

depending upon the problem. For example, in the genetic problem of Chapter 5, the "true" choice 

variables fmt are information desired by the breeder; they describe the acts to be taken in the real 

world. On the other hand, an optimal growth problem in macroeconomics may be interested only in 

the states reached, and not in the underlying variables. Caution should be used in determining which 

vciriables to keep, as each variable stored uses valuable memor>' for each bubblette. Finally, the hints in 

the fifth may speed execution in some cases, but will not be possible or worthwhile in all instances. For 

example, after an iteration of the algorithm, it is possible to store the optimal ne.xt state for all states 

considered during the iteration. This can be done by checking each bubblette to see if it was calculated, 

and multiplying by the relative sizes of the current and replacement grciins. However, it will generally 

be computationally expensive to do so; whether it is worth the cost will vary with the problem. In 

particular, as the solution stabilizes after several iterations, the best choice will be nearly the same as 

in the prior iteration; saving this information will eliminate most calculation-at the cost of increasing 

memor\" consumed and thereby limiting the number of bubbles available. 

Once the contents of a bubblette are specified, it has three possible states of its own: fully calculated, 

fully uncalculated, and unccdculated with a hint. The fully calculated bubblette must, at a minimum, 

contain the following information: the fact that it is calculated, all state variables for the bubblette, 

and the '"next" bubblette-the bubblette reached in the next generation. However, more information is 

desirable, and eases calculation. Pcirticularly, it is desirable to store the choice variables, such as the 

ft, which lead to the next bubblette. 

E a bubble is not yet calculated, it may yet have a "hint" left from a prior iteration, such as what 

state the corresponding bubblette in the prior iteration chose, as described above. This hint, perhaps 

the result for this or an adjacent location in a prior run, can be used as a starting point when the 

bubblette searches for its values. However, storing the hint does taice storage space. As such, it may be 
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desirable to add a pointer variable to bubblettes for hints, allowing them to point to another bubblette 

for a hint, rather than storing information itself. This is not possible, however, in the the fully developed 

algorithm, as bubbles can be destroyed as they grow stale. 

3.5.3 A structure for the bubbles 

As the bubble is divided into bubblettes, it clecirly must, at a minimum, contain storage space for 

its constituent bubblettes. This, indeed, is the purpose of the bubbles-the optimization will work by 

checking states adjacent to tentative optima, meaning that once a state is accessed, its neighbors will be 

accessed with high probability. Thus it is desirable, insofar as possible, to store adjacent states in such 

a manner that finding one makes finding its neighbors cheap. The search described below is expensive: 

execution time is cut drastically by reusing the results of a search. 

While it is conventional to think of "balls" in n-space for arbitrary regions in multidimensionai space, 

the h}-percube is more natural to the computer: a 5 x 5 x . .. x 5 region is well defined in memory, but 

the set of all regions within distance 5 is not. The result will be wasted space if a hypersphere was 

the correct solution, but experience has shown that it will often be necessarj- to allocate a new bubble 

ne.xt to existing bubbles (indeed, finding such bubbles is the critical portion of the algorithm), and 

hypercubes "stack" neatly, while hyperspheres can be tangent only at a single point. In other words, 

hypercubes can be placed next to each other without holes, while other shapes cannot. 

In some cases it may be possible to mitigate wasted space by constructing bubbles with arrays of 

pointers to bubblettes, and only allocating space for the bubblettes when actually used. For eleven 

possible values for each of five state variables, this mecins 161051 pointers, which will take 629 kilobytes 

of storage per bubble on a thirty-two bit machine. While this is a massive amount of storage, and 

by assumption will be largely unused (it has pointers for aJl bubblettes within ten five states from the 

center in everj- direction, most of which will never be considered), this is still less than ten megabytes 

for fifteen bubbles, leaving the balance of memory available to allocate for states as they are calculated. 

However, in the one-dimensional case of Chapter 4, the use of static rather than djTiamic arrays was 

found to approximately double performance. 

It will generally be assumed that there are an odd number of levels within for each variable: the 

center of the bubble comes from some prior knowledge or solution, and a symmetric number of levels 

on each side results in an odd number. 

Merely containing the bubblettes, however, is not enough for the bubble structure. It is necessary to 

search the bubbles, so that they are not needlessly duphcated. Therefore, bubbles should be of a uniform 
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size with their centers on a predetermined grid. Figure 3.9 shows possible bubbles and bubblettes in 

two-dimensions, with grid representations for possible locations of both bubbles and bubblettes. 

•Ajiother useful feature in a bubble would be reference hints for uncalculated bubblettes. .After an 

iteration of the algorithm, calculated values and choices for the next state will exist for some or all 

of the bubblettes, mciny of which will be contained within the corresponding bubbles on the ne.xt run. 

These values can be saved as hints for the corresponding bubblettes within the smellier bubbles of the 

next pass. 

3.6 The optimal genetic improvement model 

The initicd problem solved considers only the value of the final state; intervening states are ignored. 

WTiile this is not typical of economic problems, there are three reasons for doing so for the genetic 

model: 

1. There is a reference problem with a known solution for comparison, namely that found by Dekkers, 

et al, [Dekkers 98| 

2. It is simpler to test and debug such a model, and 

3. The underlying problem is "stifFer, " and a method that properly solves a problem of this type 

can be expected to solve easier cases. 

The "stiffiiess" arises from the Hessian matrix. With a reasonably long planning horizon, choices made 

in the early generations have effects in the final generation which are so small they have little impact 

upon the final generation. 

3.6.1 Replacing choice Vciriables with state variables 

One final obstacle must be addressed before attempting a dynamic programming solution: the 

discretization of the choice space. Most fundamentally, the choice variables cannot be permitted to 

take continuous values, as dyncimic programming relies upon repeated states, and continuous choice 

variables result in continuous state variables which do not repeat themselves. Discretizing the choice 

Vciriables does not help with non-linear functions, as the spacing between states resulting from adjacent 

permitted values of the choice variables will change, cind the states will not take the permitted values. 

These difliculties suggest that transforming the problem into one of choosing state spaces transitions 

from those permitted, and afterwards trjinsforming the solution back into the choices that v-ield the 

transition, may be the easiest way to solve the problem. 
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Figure 3.9 Placement of bubbles on grid in state space 

Bubbles should be plax:ed on a predetermined grid, as shown by the 

solid lines. Permissible states are at any of the vertices, and bubblettes 

actually used axe represented by dots. The grey areas represent bub­

bles, which may or may not have all of their bubblettes used. 
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3.6.2 Solving the model 

Figiore 3.10 is a simplified flowchart for a recursive function bestVaJ-O which queries a bubblette 

for its value. When called, bestVaJ-O is passed arguments identifying the calling bubble and bubblette. 

the queried bubble ajid bubblette, and the stage for which the bubblette is queried. 

Beginning in the upper left, the very first task is to see if the bubblette's value has already been 

calculated. If it has, this value is returned, and the fimction exits. Assuming that the bubblette has 

not yet been calculated, a test is made to determine if the bubblette is cciUed for the fined stage, which 

may be ""special" for ^^arious reasons explained throughout this paper. If it is the final stage, no search 

is necessary, and the value is calculated, stored, and returned. If the fimction fails to exit by this point, 

a search will be necessary. .\ sequentially issued identification code is created, which will be used to tag 

bubblettes visited during the search. The purpose is to avoid fully evaluating a bubblette more than 

once. 

It is necessarv- to identify a bubblette at which to begin the search. Various strategies are possible. 

The simplest will generally be to use the default choice method. An alternative after the first iteration 

is to save "'hints" from paths calculated but not chosen and to stairt at the choice that was determined 

to be the best for the corresponding bubblette of a prior iteration. 

The algorithm then bypasses the exit condition and advancement mechanisms in the center-left 

section of the chart, cind proceeds to tagging the base index with the sequential code. Unless another 

descendant instance of the function looks at the same bubblette, this wiU prevent later recalculation of 

the bubblette. Note that for cyclic solutions, a check should be made of the path before issuing this tag. 

Once the bubblette is marked in this manner, a check is made to see if the transition to this bubblette is 

possible. If not, a branch is made to check exit conditions. If possible, the function is called recursively 

to find the value of that bubblette. 

The returned value should reflect the transitory contribution of the next bubblette, as well as the 

discounted value of all future states reached. To this value is added the cumulative contribution made 

by the step to that bubble. 

If the value is the best seen to this point, the base index is chajiged to point to tliis bubblette. 

Ancillarj' information which is of value later, such as the choice variables that create this solution, may 

also be stored at this time, depending upon the needs of the pcirticular problem. 

In either case, exit conditions are then checked-and will never be met if the index was just changed. 

While other methods are possible, the neighbors of a bubblette are those for which all indices differ 

by at most one. While it is possible to write a loop that steps through the multiple dimensions, it is 
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Figure 3.10 Flowchcurt for bestVaJLO 

bestVaJ-C) finds and stores the best action that can be taken for a 

given state, and recursively calls itself to solve all later stages. 
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faster to have a constant axray indicating all possible relative addresses, allowing a single loop to check 

all dimensions. If this index reaches its maximal value, then all neighbors of the bubblette have been 

found either impossible or inferior to the base bubblette, ajid the value of that bubblette is returned. 

If not, the next neighbor is identified from the constant array and checked. 

Some issues have been glossed over in this explanation. Most importcintly, it is assumed that the 

bubblettes are easily found [see the discussion at page 39 which describes function bubbletteAtO 

during multi-dimensional searches for more information]. Additionally, discounting has been glossed 

over: the value returned is actually discounted to its present value in the stage of the calling stage. 

The diagram is geared to the case of a known final stage, and non-cyclic solutions. If the stopping 

time is unknown, rather than returning the best solution found, the best solution is compared to the 

default choice, which is instead returned if the best solution does not beat the default by at least the 

information's cost. If cyclic solutions axe an issue, as in optimal growth problems, a history should 

be passed to the fimction which can be checked as an additional exit condition when a bubblette is 

revisited. 

It is importcint to note at this time that the bubblette with the highest value will not necessarily be 

chosen. It is not only the value of the bubblette itself that matters, but also the value added in stepping 

to that bubblette. Thus, reaching a bubblette with a value of .3 while gaining .5 from stepping to that 

bubblette is more valuable thcin reaching a value of .4 from which a gain from the step of only .2 is 

achieved. However, the gain of .5 is dependent upon the bubblette from which the step is made; it is 

entirely possible that the stepping gain is only .1 in reaching that bubblette from a diflferent successor 

state. .A.S such, the bubblette chosen will vary depending upon the prior state. 

3-6.3 Extending the notion of "neighbor" 

Generally, it is not difficult to define the neighbors of a bubblette-they are all bubblettes distant 

by at most one location in each direction. However, this becomes more complex near the boundaries 

of allowed states. Consider the neighborhood in Figure 3.11: none of the -fl states in the x direction 

are accessible, due to the boundaries on permissible states. However, the optimum is at C. Simply 

checking all states adjacent to .4 brings the incorrect conclusion that A is the optimal point. 

-A-ccordingly, the algorithm must consider the nature of the problem eind under what situations this 

problem may arise. In this study, consideration will only be given to the straightforward case of a 

"superior'" and "inferior'' state v'ariable, such as p and d in the genetic example of later chapters. In 

this formulation, the superior variable is not only the primarj' variable of interest, but is capable of 
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Figure 3.11 Redefining the notion of "neighbor." 

At A, none of the +1 states in the x direction axe accessible, as indi­

cated by their grey coloring. The optimum is at C, while B is superior 

to A. The line indicates the boundary of permissible state-space. B 

is therefore located as the nearest state, and checked, allowing the 

optimum at C to be found. 
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reaching ciny state in its range if an appropriate value is chosen for the inferior. The inferior variable 

may be important in its own right, or it may measure some undesirable side effect, such as d below. For 

illustrative purposes, it will be assumed that increases in the superior variable are generally desired, 

although they may be offset by the corresponding change required in the inferior variable. 

In Figinre 3.11, after attempting all adjacent states, .4. remained the tentative solution. Before 

accepting .4., however, the algorithm checks to see if ciny of the +1 states for the x direction were 

accessible and finds that none were. It then detours ajid calculates the rajige of possible inferior states 

for the 4-1 value of x. It then checks the nearest possible state in that direction, namely B. If this point 

is superior to .4., then the search resumes at B. If not, depending upon the nature of the problem, it 

may be desirable to check additioncd states before declaring A the optimum. In the two-dimensioned 

breeding problem of Chapter 5, it has been found more efficient to check the two nearest ^'alues for the 

inferior state than to accurately handle floating point to integer conversion and integer rounding so as 

to correctly locating the "nearest" state. In that problem, due to the shapes of the search space, it is 

also not necessarj- to consider decreasing states of the superior variable, but only the increasing states. 

3.6.4 Collapsing the bubbles 

When the best value for the current grciin is reached, the bubbles are "collapsed." New bubbles are 

created which are centered about the path chosen, ajid with the grain reduced. Additionally, hints are 

stored regarding the "expected" path from bubblette to bubblette. For the center bubblettes, this is 

simply the next central bubblette for the next stage. For other bubblettes in the region calculated in 

the prior iteration, the hint is the bubblette at the same point in space which was previously reached. 

Due to the collapsing, there will be somewhat arbitrary choices made as to wliich bubblettes from the 

prior iteration correspond to which bubblettes in the new generation-if grain is halved, each possible 

state in each dimension has three new states to which it could correspond-the same value and the states 

halfway to the old adjacent states. Rather then spend effort and computation on the matter, this is 

simply left to the default rounding performed by Fortran; the result will be off by at most a single state 

in any dimension, and adjacent states will be checked in any event. 

A minimum of two bubblettes above and below the center will be created within each bubble. If 

bubble sizes cire flexible, a check is made to determine how many states were actually e^'ciluated in each 

direction for that bubble, and if larger than two, this queintity is used instead. Furthermore, a check 

is maxle to insure that no boundary states were chosen in the final solution-this could indicate that a 

better state existed after the boundaxj-. In this case, the bubbles are re-centered about the solutions 
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found, and the Lteration repeated with the same grain. This avoids the problem of missing bubbles, and 

is satisfactory with a single state variable. As a practical matter, flexible bubble sizes seem possible 

ordy for a single-dimsion, or in cases where bubble misses (stepping to a bubblette outside the starting 

bubbles) axe very raxe events. 

Experience in workiag with this problem has shown that a bubble size of five, for two states above and 

below the target, is optimal, at least for the genetic problem of later chapters. In the one-dimensional 

case of Chapter 4, increasing this to three states above and below the central state increased execution 

time by approximately twenty percent and did not provide improved results. The algorithm is repeated 

until the grain of the probabihty space is satisfactorily small, with the final iteration yielding the 

reported solution. 

3.6.5 Adding discounting 

To this point, the only concern has been the maximum amount of progress that can be made, and 

only the final generation has been considered. It is not difficult, however, to modify the model to 

consider the present value of all generations, and even to allow for the present vcilue of an infinite 

planning horizon, . 

Previously, the program considered only the vHilue of the final stage and added the gciin in polygenic 

value for stage along the way, creating a sum equcd to the value in the final generation. 

For this discussion, it is assumed that the worth of the state can be divided into a portion that is a 

permanent and cumulative change and a portion that is not. In the genetic model of Chapter 2. these 

portions are the polygenic value and the contribution of the major gene, respectively-the polygenic 

value is the sum of the increases over all generations, which are independent of each other, while the 

contribution of the major gene depends only upon the \'alue in the current generation.. .-Vs such, a 

change in the cumulative component in stage t increases all generations by the same amount. The 

discounted value of eui increase 6, with a discount factor 

p = I — r (3.4) 

is as follows for a finite horizon: 

i=0 i=0 
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1 -= b—^ (3.5) 
1 - p  

To calculate a present discounted value of the herd at time zero, then, bestValO need only be 

modified to apply the identity in [3.5] to the calculated value for the permanent portion of the change 

in state: discount this value cuid that returned from nextValC), and add the current \^ue of the major 

gene. This is accompUshed by a simple if/then structure in bestValC). The present value of the 

choice made is reported for each generation, valued at the time the choice is made. This is not the 

same as the present value of the generation; the value of the current state is not included. Instead, it 

is the value of the next generation, discounted once, in addition to the values of ail future generations 

discounted appropriately since these too are consequences of the choice made. By calculating in this 

manner, it is easier to compare the relative value of choices later when choosing whether or not to test. 

3.6.6 An Lafinite horizon 

Extending the problem to an infinite horizon is also straightforward and can be accomplished in 

a number of different ways. The approach which will be used in this study is to use the solution for 

the n-stage problem as a starting point for the n -I- 1-stage solution. The stcirting \-alue for the gene 

frequency in generation n + 1. Pn+i, is taken as increasing by half as much from generation n as the 

increase from generation n — 1 to u as in the prior generation but no more than half of the distance to 

1.0. That is, the starting value for Pn-hi is 

Pn Pn—1 1- Pn 
Pn+i = min Pn. + (3.6) 

By applying standard discount rates, a point is reached where future generations eventually provide 

very little present value. Furthermore, in choosing the optimal breeding progrzun, it is the difference 

between potential present values of the herd in distant generations that matters. That is, given two 

possible states for a distcint time, it is the difference between the present \'alues of those two states, 

rather than either state itself, that matters in making a choice. .A.s such, for any arbitrarily small e 

difference between those states, there exists an n such that the difference between the present \'alues 

of proceeding for n and for n + 1 stages is less than e. This is the first approach taken ajid requires 

minimal modifications such that the prior version of the program is placed in a loop which exits when 

the gain between subsequent stages is less than the specified convergence criterion. 
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3.6.7 Using default choices 

While the above approach could work, it may not be computationally or ancJytically practical. 

However, a better method exists. In the simple approach, the entire vaiue of the added stage is asi 

increase, though it is possibly offset by different actions in prior stages (the steps that are optimal for n 

and a -t-1 stages are not the same, and thus the combined present value of the first n steps of the n -r 1 

stage solution are worth less than the combined value of the n stage solution). Rather than ignoring 

the extra stages, it is more efficient to switch to default choices after n. A more efficient solution is to 

instead of ignoring stages after n to switch to mass selection, and calculate the present vaiue in that 

manner. This simplifies the calculations in [3.5l, which becomes 

i=0 

The only further modification required is to change bestVeilOsuch that in the final stage, it returns 

the present discounted value of future stages under mass selection. 

3.6.8 Choice costs 

The results so far consider only the revenue from the optimization program cind not the costs. 

Realistically, information and/or institutional costs will exist; the optimization program should only 

continue when the benefits e.xceed the cost of the information, the benefit being the gain in excess of 

the gain from the default choice. A slight change in the algorithm allows the cost to be evaluated: the 

best possible choice is still found, but its value is compared to the value of switching to the defaidt 

choice method. If it does not exceed the default choice by the information cost, the switch is made to 

the default choice. 

3.6.9 Chcinging the horizon 

The largest computational cost is not in calculating the values of the respective states, but in 

preparing the bubblettes for this computation and locating bubbles not on the initial path. Once it is 

known that states beyond a given stage are not used, there is no reason to continue calculating these 

states. Similarly, if a breeding program has not switched to mass selection, a longer breeding program 

may be desirable. The logical control variable smartShrinkGens is added to handle this situation. 

With smartShrinkGens set to true, if default choices are not chosen in the final choice stage, the 

time horizon is increased by one. The solution of the current iteration, augmented by default choice for 

the final stage, is taken as the center, and the next iteration is run with the same grain. 

(3.7) 



www.manaraa.com

37 

Conversely, if the switch to default choice occurs before the final stage, the stage in which the switch 

occurs becomes the final stage. However, the grain is reduced, as the avciilable states are a subset of 

the states cilready considered. 

This final model can be e.xpressed as 

rr-i 

where W (Sr) is the present value at time T  of niciking default choices forever starting from state S t  •  

3.7 Higher dimensions 

While this method effectively solves single-dimensional problems, its true value lies in the ability to 

partition and search subsets of multidimensional space afflicted by Bellman's Curse of Dimensionality. 

It is again assumed that changes in the state can again be divided into cumulative and transitor>- effects. 

3.7.1 Change in bubble £ind bubblette structure 

The initial structure, which assumed a small number of bubbles which could be moved to handle 

boundary- solutions, is not practical in multiple dimensions: too many moves may be needed. Instead 

new bubbles will be created and 'inisses" hcindled. 

While there is no reason in principcd that all bubbles have the same size or grain, in practice, 

requiring them to do so will allow faster searches. This is best illustrated by considering how the 

function bubbletteAtO works, as illustrated in Figure 3.12. bubbletteAtOis the key to the multi­

dimensional search, as it is the method by which bubbles are found after "unexpected" transitions. 

In the single-dimensional solution, bubblettes were referred to by references relative to the centers 

of their bubbles, which was practical when a bubble for a stage would always transition to the bubble 

for the next stage. With multiple possible destinations in different bubbles, this information is not 

useful for searching, and absolute references are used. With four-byte integers, it is possible to specify 

more than a billion states in each dimension; this is sufficient for nine digits of precision in the genetic 

models. 

An curray bubCenters is used to store the centers of the bubbles; and for the starting solution in any 

iteration, the centers can be ciny valid bubblette. Subsequent bubblettes are forced onto a grid, and 

may (and, unless the intial bubble was centered on the grid, will) overlap the starting bubbles. WTiile 

the starting bubbles could also be forced onto this grid, this would move starting solution away from 

the center of the bubble, increasing the chances of a miss. 

(3.8) 
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Figxire 3.12 Searching for a bubble with bubbletteAt (). The function is passed 

the location in state-space that is needed, and an initial guess as to a 

bubble that might contain that state. The identity of the bubblette 

calling for the search is also known to the function. 
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While searching, bubbletteAtC) is passedto the calling bubblette, the suspected next bubble, and 

the absolute address of the desired next bubble. bubbletteAtC) first checks to see if the bubblette is in 

the suspected bubble, and quickly returns if this is the case. If not. all bubblettes mthin the bubble that 

contains the calling bubblette are checked for an indicator of the next bubble. These bubbles. If cuiy, axe 

checked for the bubblette. Failing this, the center that a bubble that contained such a bubblette would 

have if its bubble existed is checked against cill bubbles until a match is found, tf no match is found, 

a new bubble is created. In all cases, bubbletteAtC) stores the bubble of the next bubblette in array 

nextBubs to speed subsequent searches. 

Finally, it should be noted that the maximum number of bubbles allowed is set at compile time 

for performance reasons. It is possible that the cdgorithm will rim out of bubbles. To guard against 

this possibihty, each time bubbletteAtC)is called, it increments a counter, and stores the value of the 

counter value with the bubble accessed. This allows the least recently used bubble to be identified and 

discarded if necesscirj', though the bubbles containing the starting solution will never be discarded.^ 

3.7.2 Sparnhing the multi-dimensional space 

In large part, the multi-dimensional search is similar to the single-dimensional search. .A.s such, only 

the differences will be discussed. 

The first difference is in the pattern to search for states; there is no concept of '"next" in multiple 

dimensions. Instead, a sequence is defined that includes all adjacent states. These are sequentially 

checked; and when a superior state is found, it becomes the new center of the search, which begins 

again. 

Significant overlap of these search spaces is probable, and there is no practical way to store and 

quickly search all bubblettes already checked; this would require the impractical repeated and potentially 

expensive invocations of bubbletteAt C). Instead, bestVal C ) increments a counter each time it is called 

and stores this value in each bubblette it checks. This giv'es a high probability of determining whether 

or not it has already checked a bubblette, though not a guarantee, as a descendaat invocation of the 

function may check the same bubblette. However, it is generally unlikely that more than one stage will 

look at the same bubblette. 

-Another difference arises in that with a single-dimsion, it may be possible to find hmits on the 

••It may be desirable to have "protected" sets of bubbles for each generation. For e.xample, of 1,000 bubbles total, a 
decision may be made to set aside fifty bubbles for each of ten periods, such that only that period can overwrite those 
bubbles. This would guard against thrash conditions in which the cin expansive search in a later period overwrites bubbles 
still in use by an early period. However, this would require search of both the common and individual areas, followed by 
a comparison, cuid has not been found necessary for the genetic problem. 
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extremal values of the state variable in a straightforward mamier. With multiple dimensions, the limits 

on each state variable depend may depend upon the Vcilues of the others. As such, no attempt is made 

to hajxdle such limits; instead, as a state is considered, an attempt is made to solve for the choice 

variables that vield that state. If no solution exists, the state is considered impossible. 

3.7.3 Separable substates of the states 

In some problems, it may be possible to separate the state variables for the next generation into 

substates that are fully or partially separable in the mathematical sense. For example, in the genetic 

problem of Chapter 6. the choice spaces for the sires and dams cure separable and independent of each 

other. In such cases, thoughtful caching of derived values may \ield immense rewards in reduced 

computational time. 

Consider a two-part problem, in X and F, which correspond to aild in [6.5|. The choices 

made for Xt and Yt produce substates x{Xt) cind yiYt) that combine as 

z t ( X t , V t )  =  z ( x i X t ) , y ( V t ) )  (3.9) 

That is. the specific values of Xt and Yt do not interact. Suppose further that the functions x() and 

(/{) are reasonably expensive to compute ajid dependent upon the current state. 

To mcike a search of all adjacent states would require that each possible value of A' and F occur 

at least tliree times: once for each state of the other. Furthermore, if movement is made in the X 

direction, the same vcilue of Y will again be needed multiple times. It seems reasonable, then, to store 

these in some fashion. 

While other methods are possible, the approach that will be taken in such situations is to have 

separate caches for each substate within each instance of bestVsLlC). The cache will be centered at 

the starting point of the search, and begins filled with an initial value indicating that it has not been 

calculated. When a value of x{Xt) is needed, a check is first made that Xt is within the bounds of 

the cache, dimension by dimension. If not, the Fortraji intrinsic fimction EOSHIFTOis called to cheaply 

move the cache by a set amount in the direction needed. 

The benefits of the cache will depend upon the application. In the genetic problem, the payoff is 

significant, as calculating the polygenic gains is the second most expensive portion of the algorithm; 

bubble lookup is the most expensive. 
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CHAPTER 4 THE GENETIC PROBLEM IN ONE DIMENSION 

4.1 Formulation 

To establish, a framework, a simphfied versioa of the genetic model will be used, along with some 

strong assumptions necessaxy for the model's development . Particularly, an infinitely large breeding 

herd with an infinite number of genes is assumed, yielding a normal distribution of the breeding values 

of the animals. It is further assumed that genetic progress does not cause deviations from normality. 

The variance of the polygenic distribution will be assiuned to be remain constant for the current study, 

which is justified by Buhner's findings that in response to selection, variance drops but asymptotically 

approaches a fixed value [Bulmer 71]. 

For the case of optimization of genetic improvement with a QTL, or identifiable Quantitative Trait 

Locus, the general model can be further specified. The time periods are the generations of breeding, 

and the state \^ables are the frequency of the major genes (including covariance), mean and variance 

of the polygenic distribution, the covaxiance between the polygenic effect and major genes, and the 

breeding value (which is actually a function of the others). While the major genes and the polygenic 

effect interact only additively in this example, any linear function would be permissible. 

4.1.1 Simple case; one locus 

In each generation, there will be the same number of "kinds" of creature, as determined by the 

combinations of alleles present at a single major gene. With a single locus having only two possible 

\'alues (6 and B), there cu-e three types of creatures-namely those with 0, 1, or 2 of the superior gene 

(66, 6B, and BB). Generally, the number of t>'pes is the product of the number of permutations for 

each locus. 

The choice set for each generation is the fraction of each kind of creature to be bred to produce the 

following generation. Let m represent the type of animcd (0, 1, or 2), fmt represent the fraction of type 

m that is chosen to breed at time and pmt tiie fraction of all animals at time t that are of type m: the 

sum of the products of these fractions with the corresponding frequencies must equal Q, the fraction of 



www.manaraa.com

42 

the entire population needed to produce the next generation: 

m 

Note that these choices are not fully independent; if there are n t>-pes, the first u — 1 choices also 

determine the final choice. AdditionaJly, while the fractions are necessarily in the [0,1] range, not all 

choices Jire necessarily possible. For excunple, if .2 of the population is needed to breed the following 

generation, and tj^pe m has a frequency of .4, fmt must be chosen from [0, .5]. 

Given the multi\'ariate distribution of the major and polygenes and the frequencies of the kinds, 

the average polygenic breeding value of the herd may be calculated. Alternatively, and more easily, it 

can be calculated from its value in the prior generation. For example, with a single major gene, and 

ignoring gametic phase disequilibrium, the result is 

^ m 

where Zmt is the height of the standard normal distribution at the truncation point [Dekkers 98|, and 

Qmt is a function of pmf specifying the portion of the herd that is of type m. Similarly, the average total 

genetic value of the herd, Gt can be calculated from -4t and the gene frequencies at time t as 

G t = a { 2 p t - l )  +  A t  (2.10) 

for additive genes, to which attention will be restricted until Chapter 7. 

Finally, the objective function will tj-pically be one of two forms: either a function, perhaps equality, 

of Gt, the value after the final breeding, or a sum of a discounted profit function of the vaiues of the 

state \'ariables in each generation. The first is appropriate when the objective is to maximize genetic 

progress in a given number of generations. The latter ccdculates the economic value of a breeding 

program. Note that it is not necessarily the breeding value alone which is used but more genercilly 

a function of the breeding value. An example would be a price premium for animals which exceed a 

certain quality. In this case, the breeding value might represent the amount of meat produced, which 

could be sold at different prices depending upon how lean it is. Another example would be a fbced price 

premium for the fixation of a gene in the population, which would introduce a discontinuity into the 

objective function. 

4.1.2 Simplified finite number of generations 

In this simplified version, only the mean breeding value of the herd after the final breeding generation 

is considered. This is a test of the maximum rate of progress over a finite period, but it is rarelt 
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ecoaomically reasonable: it neglects both the sale of the animals dxiring most of the program and the 

residual v-alue of the operation at the end of the finite period of time. Further, the present v-alue of the 

early generations should count for more than the final generation,rather than nothing other than their 

contribution to the final generation. 

Nonetheless, this model is useful in developing the numerical methods, and ferrets out potential 

problems in the methods which follow. It aJso shows the maximum rate at which genetic progress could 

be made over a fixed number of generations. This can provide useful insight into problem formulation 

and solution reasonableness. Additionally, this is the problem for which a solution has been demon­

strated. and is therefore useful as a check on the accuracy of the methods [Dekkers 98]. However, this 

is almost surely not the economic problem. 

4.1.3 Discounted finite generations 

The economic objective function is the net present value of all future profits, discounted for all 

periods considered in the model. It should be noted that within this research, the discounted finite 

generations problem is not in itself of interest; it is developed as a tool for the infinite horizon problem. 

The simplest form is to discount the revenues of each generation, assuming that costs are fixed and 

that revenues are a lineax fimction of average breeding value, e.g., that the breeding value represents 

items such as milk produced. In this case, the problem is to maximize total profit 

where p is the discount factor rate, and is equal to 1 — r, where r is the interest rate. Note that the 

first generation can be left out of the summation, as profits during that generation are predetermined 

by the initial state. However, as more complicated cases may have variable costs from choices made, 

this generation will be left in for the sake of consistency. 

This formulation, however, still only accounts for a verj' simple case of a single major gene affecting 

a single trait. Further, it does not taice into account economic factors such as premiums received for 

lines that are fixed for the gene, profits, or the ability to terminate genetic testing as a choice variable. 

To account for such abilities, profitability should be considered. For excunple, consider a simple case 

in which a hog has both meat jield Y and leanness Z. At a fixed leanness, or quahty, Z, revenues 

are presiunably linear in Y. However, there is no a priori reason to believe that revenue is linear 

in leanness, though it would presimiably be increasing within some range of interest, and then likely 

decreasing-noone wants to eat a chunk of fat with a bit of meat embedded, but without any fat, meat 

t 

(4.3) 
t=o 
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is too dr>' to be enjoyable. Assuming that the desirability of leanness is unimodal, or that there is 

a single most desirable value, with desirability monotonically decreasing above and below this value. 

weak quasi-concavity should apply to revenues as a fimction of Z-it should be unimodcd with a global 

maximum. Finally, it is possible that for a given set of genes for j-ield, that total meat produced may 

be different for different levels of leanness. Revenue then becomes a function of both leanness and yield. 

and the problem expands to be that of maximizing 

T 
= (4.4) 

t=o 

Note that this formulation inclufles the possibility that costs change with the size or leanness of the 

animal. Letting 7 denote the vector of total genetic and breeding \'alues, this becomes 

r 
?r = ^p'7r(7t) (4.5) 

4 = 0  

Finally, some models will include a price premium or penalty based on the presence or absence of a 

gene. To remain general, let 9  denote the vector of all gene frequencies and their covariances with each 

other and the polygenic effect, and the problem becomes 

T 
;r = ^p'7r(7t,0t) (4.6) 

t=o 

While these optimization problems express the profit function tt as a function of the state variables, 

the determinism of the model means that the state variables themselves are functions of C-he choice 

variables, fmt- Letting (pt be the vector of fractions fmt selected at time t, equation [4.6| becomes, 

T 
TT =  ' ^  {1  -  ty  IT {4>t )  (4.7) 

t=o 

The final modification is to note that the cessation of testing for one or more genes may be included 

in the model. That is, it is entirely possible that a point may be reached at which the v^alue of the 

information from continued testing is less than the test cost. Consideration will be limited to cases 

in which testing occurs in every generation until its value is less than its cost, after which testing is 

terminated. As such, the testing choice variable for a gene taJces a whole number value. Letting Tg 

indicate the the first generation without testing for gene g ,  and r  itself be the entire vector of stopping 

times for all major genes being tested, 4.7 becomes 

r 
7r = ^(l-t)'7r(0t,r) (4.8) 

t=o 

It should be noted that selecting fmt after testing stops is nonsensical; there is only one type (unknown 

major gene) after this point, from which all must be chosen. 
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4.1.4 Infinite horizon 

This is the actual economic problem of interest. As an economic model, the herd should be assimied 

to continue forever-even though the farmer will eventually retire, the discounted value of the remaining 

infinite horizon reflects the value for which the herd can be sold. This problem is actually easier to solve 

analytically than the finite horizon—in the cases in which it is soluble. However, unless the problem czin 

be ancdytically reduced to a single equation or function, it is not possible to solve for an infinite number 

of generations; a rule must be found for approximation of this horizon. 

The problem is not as futile as it sounds. With the introduction of discounting, fcir-off generations 

have cui increasingly diminished impact. Thus it ccin be expected that a convergence theorem can be 

written to the effect that for any desired e, and for any generation s, that a total number of generations 

T^_g can be chosen sufficiently large that 

V t < 5  ( 4 . 9 )  

where is the optional choice with an infinite horizon, and is the optimal choice for a finite 

horizon of generations. On other words, a finite horizon can be chosen such that the error in the 

fractions selected is arbitrarily small. 

Furthermore, the introduction of a generation in which to cease testing as a choice variable simplifies, 

rather than complicates, the problem. Once testing ends, selection is by mass selection, in which the 

animals to breed are selected solely on the observable value of the trait. The genetic progress under 

mass selection is well known[Falconer], and thus once the gene is fixed (or even not fixed, but testing 

ended), there is nothing new to the problem. A "canned" function can be wTitten for the value of the 

entire future after the cutoflf generation, as discussed above. This changes the problem from "find choices 

for all generations forever, " with an infinite number of choice variables, to "choose a finite number of 

generations, and choices for those generations." 

Even without such a cutoff, the problem remains tractable. When the homozygote with both copies 

of the favorable gene is superior to the heterozygote, the gene frequencies rapidly approach one. In the 

case of overdominance, where the heterozygote is superior to either homozygote, a fixed \'alue less than 

one will be approached instead. That is, after a very smaJl number of generations, the gene frequency 

becomes very close to its optimal value, and remains so permanently. In the absence of overdominance, 

essentially all of the herd will have become homozygotes with the gene, and choosing the fraction for 

that type, the only one possible, becomes mass selection. Accordingly, cm infinite horizon may be 

simulated by considering "enough" generations. 
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4.2 Optimal control methods for soluble cases 

There axe categories of cases which may be partially solved analytically, such as the case considered 

in [Dekkers 98j. However, even in this case, ainalytic methods fail to yield a complete solution, but 

instead take the problem to a point at which iterative methods can solve for the truncation points. 

This is as far as such a method can get. 

However, the Dekkers solution is for a finite case. The actual economic problem is for the infinite 

horizon, in which the business continues indefinitely. The problem can easily be reformulated to include 

discounting and an infinite horizon. Consider again the Dekkers model described in Chapter 2. The 

genetic value Gt was defined in [2.10] as the sum of the effects of the major gene and the polygenic 

value 

G t = a { 2 p t - l )  + A t  (4.10) 

where pt is the frequency of the major gene, or the portion of loci in the population that actually have 

the favorable version of this gene, and a is the value of each copy of the gene, .-if is the mean of the 

polygenic value, which is assumed to be normally distributed with standard deviation a. The a\-ailable 

choice variables are {fmt : m G {0,1,2} , t € (0,1, ...T — 1}}, the fraction of type m that will be bred 

in generation t to produce the next generation. These axe homo morphic with the truncation points 

Xmt and density Zmt of the standaxd normal distribution at the truncation points; transformations and 

inverses exist for translation of each of the three to ciny of the others. Breeding is by truncation: all 

animals better than the tnmcation point axe bred, and axe randomly assigned to another breeding 

animal. Q is the fraction of the entire population that must be bred to produce another population of 

the same size. The initial values, of po and .4o, Eire known. 

Dekkers' problem was to mcLximize the total genetic progress by the final generation T: 

max{L|Ao,po,Q} (4.11) 
fnvt 

(maximizing L by choosing the various choice variables fmt for all relevant values of m and t, while 

tciking .4o, po, and Q as predetermined) where 

r-i 
L = ^ — \pt — — ^TpT + AoPo — 7T-'5O + a(2pT — 1) + AT (-1-12) 

t=o 

H t  =  ^ { f u P I  +  f n P t i l - P t ) }  

+7(+i + Q ^ tZu  + 2pt (1 — Pt)  z-it + (1 — Pt) '  ~3 t  j-

+Ct ~ f l tP t  — 2/2tP£ (1 — Pt)  — h t  (1 — Pt)~  I ("l-l^) 
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[Dekkers 98, eq 6-9]. The Lagrangiaji multipUers for each period. At, 7t, and €t are used to ensure that 

equations [4.17], [4.18j, and [4.17] are met. 

The extension to an infinite horizon with discounting is straightforward. Using a constant discount 

value r. note that the total genetic value in generation t is Ct and that the present value at time t = 0 

is 

(1 -  r)' G t = i l -  r ) '  a  {2pt  - 1) + At (4.14) 

and the objective function to maximize becomes 

G  =  ̂ ( l - r ) ' [ a ( 2 p ( - L )  +  . 4 ( ]  ( 4 . 1 5 )  
£=0 

subject to 

Q = /itPt +/2t2pt (1 — pt) +/at (l — Pt) (4.16) 

Pf+i = Q {f i tPt  +  f2tPt  { I  — Pt) }  (4.17) 

-^£+1 = + Q |P£^1£ + 2pt (1 — Pt) + (1 — Pf)" 23£| (4.18) 

where (4.16) is the constraint keeping population size constant, £ind (4.17) and (4.18) describe the 

progression of p and .4 given the choices made and the current state. This formulation has the same 

constraints as the formulation developed by Dekkers cuid s'an Arendok [Dekkers 98], sav^e only that 

Lagrange multipliers are required for an infinite number of time periods rather than a fixed number, a 

difference that will be critical below. 

However, it is useful to rewrite this exclusively in terms of Xmi- Letting 0 and $ represent the 

probability density fiinction (PDF) cind cumulative density fimction (CDF), respectively, of the standiu-d 

normal distribution, 

f ^ t  =  ( - i - 1 9 )  

^mt = (4.20) 

Equations (4.16-4.18) become 

Q =  ( l - # ( r u ) ) P F  +  ( l - $ ( x 2 £ ) ) 2 p £ ( l - p t ) - h ( l - $ ( x 3 £ ) ) ( l - p f )  ( 4 . 2 1 )  

Pt^.1 = i{(l-$(Xu))pr+(l-$(X2£))2£Pt(l-Pt)} (-4-22) 

Aj+1 = At + ^ |p^<?i(xu)+2p£ (I-Pt)0(x2£) + (I-P£)'0(X3£)| (4.23) 

V 0 < i < oo ('i-24) 
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The HamiltonicLii may be rewritten as 

Ht = 
Q  

-7t+l 

{(1 -^(Xu))pf  + (1 -  ̂(X2t))P£(l  -Pt)}  

| . 4 t  +  ̂  [p?0(Xu)  +2pt ( l  -Pt ) ( p ( X 2 t )  - i - ( l - p t ) ' < i > ( - C 3 t )  I 
+Q {Q -  (1 -  2(1 -  ̂  ( X 2 t ) ) p t  ( 1 - P t )  -  (1 -  ̂(arsf)) (1 -Pt) '} (4.25) 

and the function to be maximized may be written 

OO 
L  =  G  +  { H t  —  X t P t  —  } + AoPo + ' f o - ^ Q  (4.26) 

t=o 

which differs from Dekkers' in the lack of a final period, and inclusion of the discounted values of ail 

generations in G. 

The partial derivatives of L  are taken with respect to the choice variables x ^ t , the state variables 

Pt and .If, and the Lagrangian multipliers, all of which derivatives must be equal to zero. 

Taking the first partials of L  vields 

V , , L  =  V , , H  

= 0 

Q  

7t-rl '^ 
Q  

-p f0{xu}  

-Pt( l  - P t ) 4 > { X 2 t )  

0 

p f x i t 4 > { x u )  

2 p t  ( 1  -  P t )  ' 2 t O  { ^ 2 t )  

( 1  - P t )  

P l O i X l t )  

' 2 p t  ( 1  -  P t ) 0 ( X 2 t )  

[ I -  p f ) < ? { x z t )  

(4.27 

For pt, 

dpt 
=  2 ( l - r )  a - A j  

+  ̂  { 2  (1 -  $ i xu ) )P t  + (1 -  $ (X2t))  (1 -  2 p t ) }  

+2 Jt+jcr 
Q  

{pt(l>{xit) + (1 - 2 p t ) ( p { x 2 t )  - (1-Pt)9>(a:3t)} (4.28) 

-\-2ct {- (1 -  $ { X u ) ) p t  - (1 -  ̂  (xof ) )  (1 -  2 p t )  + (1 - $ (X3£)) (1 -  Pt)} 

The partial with respect to At yields information about 7t, its shadow value 

dL 
= (1 - r) + 7t+i - - f t  

aAt 
(4 .29)  
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while A and e >-16^ only the dynamic behavior of pt and the breeding constraint: 

=  Q  { f v t P t  +  h t P t  0 - —  P t ) }  —  P t + i  (4.30) 

•t-ec = Q — fuPt ~ fit'^Pti^ — Pt) — fztiX — P t ) ~  (-1-31) 

= At + ^\^l(t>{xit) + 2pt{l-pt)(t>{x2t) + 0--Pt)''i>{xzt)^-(-i-32) 

Unlike the Dekkers formulation, there is no fined period; no derivatives are calculated for that special 

case. 

As all of the preceding equations are for derivatives which must be equal to zero at the optimum, 

[4.29] means that 

- f t ^ i  =  I t  -  { I  -  r ) '  (4.33) 

This result is drastically different than Dekkers', which found that ~ f t  = 1 'it. As ~(t is the shadow 

value for .-If, and the initial \^ue --io is known, it follows that is a known value that caji be directly 

calculated. As the growth in polygenic mean .•Ij is additive, At contributes its own value to the 

undiscounted \^ue function in the current and each subsequent generation. This value caai be discounted 

to time 0, yielding 
f)n n -

(4.34) 
dG _ (1- r ) '  

dAt r 

and 

It — 
(l-r)' 

(4.35) 

This relation can also be found by starting with the limiting \'alue at infinity of zero for ~ft, and wTiting 

"0 as an infinite sum of the later values. 

From [4.27| and [4.35] come the equations 

^t-rl 
Q  

which mav be solved 

Which gives the result that 

1 Xu 1 

.5 
(l-r)'o-

r Q  X 2 t  = et 1 

0 X3t 1 

— X2t = 

^ 2 t  -  X i t  —  

Af+i  
( l - r ) '  2a 

T At+1 
(1-r)' 2a 

(4.36) 

X z i  — X 2 t  — X i t  

(4.37) 

(4.38) 

(4.39) 
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or that the truncation points cire equidistant, as Dekkers found in the finite model for additive major 

genes. 

In the limiting case of very steep discounting, as r approaches one and p  approaches zero, only the 

first generation which can be controlled should matter, as all later generations are discounted so steeply 

as to not matter. The numerators of the discount factors in equations [4.371 and [4.38j approach one. 

while the denominators are identically equal to one for the initicd generation in which t is equal to zero, 

and the equations become the same as those for the final generation in Dekkers' paper, for which the 

future does not matter. 

The relations of [4.36] can be used to remove the et from [4.28], which becomes 

At = 2(1-r)'a 

+ ̂  {2 (1 - # ( x u ) ) P t  + (1 - ̂  { X 2 t ) )  (1 - 2 p t ) }  

_j_2U—{ p t ( ! > { x u ) +  { l - 2 p t ) 4 > i x 2 t )  -  { I  -  p t )  ( f >  { x z t ) }  
r Q  

- ^ { 2 ( l - ^ i x u ) ) P t  +  ( l - ^ ( x 2 t ) ) ( l - 2 p t ) }  

- r)'o-
r Q  

{(1 - $ { X i t ) ) X i t P t  + (1 - ^ { X y t ) ) X 2 t  (1 - 2 p t )  - (1 - { X z i ) ) x z t  (1 -  P t ) }  

= 2(1 - r)'a -h 2^^ {[<?>(xu) - (1 - # (xu)) XLtjPi 

+ [<?>(X2f) - (1 - # (2:2i))X2f] (1 - 2 p t )  -  [ o { x z t )  - (1 - $(2:3£))-'^3t] (1 " Pt)} (4.40) 

\VTiich is an expression, for Xmt and A(. 

Unfortunately, this expression is not amenable to analytic or numeric solution. For any given time 

period, equations [4.16], [4.37], [4.38], and [4.40] produce four equations in five unknowns for any given 

time period: the three Xmt, aJid the multipliers At and Aj+i. If At were known for any finite period, 

the problem would be soluble for all periods. The limiting value of A( as f approaches infinity is zero, 

which is nothing more than the standard result that there is very little \'alue of something that far 

away. It is therefore not possible to do an infinite summation such was done to produce [4.35], as 

the remaining terms for each period axe combinations of the CDF and PDF of the standard normal 

distribution preventing a closed form summation. 

The only remaining possibility would be to find a %'alue for Ao- While the expression 

Ao = -J—G (4.41) 
dpo 

can be written, this is of little value, as calculating this value requires knowledge of the solution. As 
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such, there appears to be ao solution a\-ailable through Lagrange multiphers for the pure infinite horizon 

problem. 

4.3 Infinite horizon with, testing costs 

While the simple problem of the infinite horizon Ccuinot be treated analytically with the methods 

used for the finite horizon, because of the inability to find an initial Lagrangian multiplier for some 

finite time period, the introduction of a cost for genetic testing makes the problem tractable. 

Animals do not come with labels on their foreheads indicating their genetic makeup; if so, a sample 

of the the polygenic distribution would be known as well. Instead, there is some finite cost for the 

genetic testing of cm animal. Moreover, testing should not occur if the gains are outweighed by the 

costs. 

Conveniently, it is possible to put a ceiling on the value of testing. The greatest possible gain from 

the major gene is for it to become fully present in the population: That is, for pt to change from its 

present value to 1 (Note that this does not hold over over-dominant genes, which are not considered 

herein). Consider first the extreme case of taking this entire gcdn in a single generation. If no selection 

at all were to occur after this generation, the gene would keep its current frequency. Thus the change 

for the ne.xt generation is 1 — pt, which has a value of 2a (1 — pt) in the subsequent generation. Further, 

compzired to the case of no selection, it has that value in all future generations. Thus, the present \-alue 

of the change is 

DO 

P V  =  5 3 ( l - r ) ' 2 a ( l - p ^ )  
i-L 

=  2 a { l - p t ) - —-  (-1.42) 
r 

Thus, in no case is it worth testing the animals if the cost c of testing is greater than this value, or for 

an initial critical value p'^ of gene frequency 

p'= = l-  ̂ (4.43) 
2a (1 — r) 

Note that this is a conservative limit and only a starting point for the critical value. It would be possible 

to use this as a starting vcdue for a value p that could be updated-if testing is unprofitable for any 

\'alue pt, it would cdso be unprofitable for any larger value. This course is not pursued herein as it is 

not practical for higher dimensions, as separate critical values would be needed for each \'alue of the 

other state variables. 
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However, even if selection on the major gene is not profitable, mass selection would still presumably 

be used, allowing a tighter limit to be drawn. Mass selection will continue to cause the frequency of the 

major gene to change; animals with this gene will be selected at lower polygenic values, and the gene 

will become relatively more common in the population. Without testing, the observed or phenotv-pic 

tnmcation point will be the same for all groups, with the result that the polygenic truncation points 

are separated by exactly a, or that 

h,~ d ha f i 11\ 
Xit H — X2t — ^3£ — (4.44) 

a  a  

The frequency in the next generation as a function of the current frequency can then be calculated. 

First, the overall truncation point is 

xt = (1 — (5) (4.45) 

That is, all creatures in the upper fraction Q  of the population are kept. Given that the program of 

breeding for mass selection is well known, it is possible to write a value function for the current value 

of the future gains from mass selection, 

OO 

PVm CPt) = E (1 - [2« bi" . -Pt) + - -^t)] '.-1-16) 
i=:L 

The amount of work to be invested in finding a better bound will depend upon how much compu­

tation the bound saves; a loose bound does no harm, but merely requires additional computation. 

The bound has only one read purpose: if the majcimum gain from all future testing exceeds this 

generation's cost of testing, there is no reason to test, ajid mass selection will be used forevermore. 

4.4 The breeding problem and dynamic programming 

The naive approach to the breeding problem would be to look at the solution spaces as { f m t } -

However, this is far too complicated a space to use as a state space for dynamic prograxnming: at even 

a resolution of .01, there axe 100 possible values for each choice, or 10'' per generation with only one 

choice gene. Then for T generations, there are lO''^ possible states to consider. 

However, for a finite horizon problem, or an infinite horizon problem with a known p  bound such 

as [4.43], pt alone may be used as the state, p may be divided into as many states as desired, and the 

optimal choice for ea^h value of pt for each generation t can be calculated. 

Consider again the nature of the general problem: once a change has been made to At, the change 

is permanent. The optimal choice depends only upon the present value of pt and the number of 
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generations remaining. The optimal behavior for p t  >  p  i s  known, namely to switch to mass selection. 

This is entered into the action space as a beginning. Letting 

A = i (4.47) 

where .1 is the spacing between potential values of p t  for a number of states S ,  the first action considered 

is for Pt = p — A. There are only two choice variables to consider, fu and f^t- With only one state 

variable, the choice of ft is not unique. To resolve this, ft is selected so as to maximize the change in 

polygenic breeding value. 

For a single state variable pt, this appears to be an eflScient search: rather than checking all possible 

values of pt, only a portion are checked. While this is convenient for the single state variable, it maybe 

critical as the number of state variables increases. 

4.5 An initial algorithm 

Consider first the simple problem of one gene with a fixed polygenic variance. For any given pt and 

there is an associated optimal value G (pt), reflecting the greatest value of the objective fimction, 

whether present discounted \'alue or the total breeding value of the final generation, that can be achieved 

starting with pt- First, using [3.7] note that for an infinite horizon, the starting value affects the 

present value by only a known offset 

G { p t , A t )  =G(pt,0)H (4.48) 
r  

Then break G  into three pieces; the value of generation t ,  which choices in t  cannot affect (Equation[2.10l); 

the discounted value of the subsequent generation t + 1 ;cind the discounted value of all generations 

after t + 1: 

OO 

G { p t , A t )  = G (pt,-4t) + (1 — r)(? ^ { I  —  r ) ^  G  [ p t .  A t )  
s=t - i -2  

= -4t 4- a (2pt — 1) 

+  ( 1  - r )  ^ + 2pt^.l (1 — Pt+i) Z2 t+2  + (1 — Pt + l)" 23£4-i} + -4d 

4- (1 — r) a— {2/i, tP j  +  f^ tP t  (1 — 2pt)} 

OO 

+ (1 — r)* [a (2pt — 1) + As] (4.49) 
s=t+2  

Note that part of the value of A, in the simunation can be regrouped into the first term, as can the 

appearance of .-It in the period t +1. However, cuiother approach will be more fruitful, namely redefining 
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the objective function. Consider 

^  iPt )  = |2pfZi£  +  2pf  (1  — p t )22£  +  (1  — p t )"  Zs t j  

+ Q {2/uP( + f2tPt (1 — 2pt)} 

+ (l-r)F(p£+0 (4.50) 

As 

G { p t )  =  —  + a  { 2 p t  - 1) + (1 - r ) F  ( p ^ ^ i  ( p t ) )  (4.51) 
r 

maximizing F is equivalent to maximizing G. 

The problem is now in a state to which d>Tiamic programming can be applied. Using S possible 

states for pj+i ,  le t  f t  {p t ,p t+i )  be the value of  f t  that  maximizes  i lAt+i  for  the  indicated v-alues  of  p .  

where 

Alt = At+i - At (4.52) 

The optimcd values for f t  { p t )  are simply the allowed states for which G  is greatest. 

The avEiilability of a value for F{ps )  for all s larger than t  is taken as a given; it will be called 

recursively if necessaxy. This reduces the problem to finding the best set of ft for the current generation. 

.\n initial trial solution is considered, from whatever source, yielding a tentative value for of the ne.xt 

f r e q u e n c y  g i v e n  t h e  c u r r e n t  f r e q u e n c y ,  F  ( p j ^ - i )  i s  t r e a t e d  a s  k n o w n ,  a n d  t h e  r e m a i n d e r  o f  F  { p t )  

is optimized over [ f t  -P t+i  {P t , f t )  =  Pi+i} j  for which standard optimization methods suffice. This is 

compared to the maximum over [ft : pt+i (pt, ft) = Pt-i-i + ^1- and the better value is stored. 

The optimal value and behavior with granularity A can now be found by simply calUng this optimal 

\^ue function for F (po), which calls itself recursively to find any other needed values for other values 

of Pt. Many possible states will likely be passed over, saving computational time. These solutions can 

then be used as starting values for another nin with a finer grain, until the desired level of resolution 

is found. The algorithm has previously been described in Figure 3.10 at page 30. 

As a side effect of this method, the stiff matrix problem with genetic algorithms and Newton methods 

is avoided entirely: there is never an attempt to directly determine the present value of the effect of a 

change in a current variable on a state several generations away; all calculations find the optimal \'alue 

by looking ahead only one generation, rather than working with values for distant generations. 

4.5.1 Simple dyncimic programming algorithm 

For an initial algorithm to demonstrate the concepts presented herein, consider again the simple 

model of [4.11]. As this model has a known solution, it will be the first to be solved. However, in 
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designing structures and methods, more attention will be paid to the usefulness of the model in solving 

the general case than the problem at hand. 

Using equations [4.161, [4-17], and [4.18], 

Q — f i tPt  + /2£2pt (1 —Pi) +  fzt  (l — Pt)  i  4.16) 

Pt+i  — Q {fuPt  +  htPt  (1 — Pt)}  ( 4.17) 

-•it-l-l ~ Q + 2pt (1 — Pt) ^2t + (1 — Pt)~ 

[4.17] cam be manipulated into 

f c f i_ \ _ QPt+i — fuP^ 
h t  ( / i t  P t + i )  —  n  r —  

P t  (1 - P t )  

expressing /ot as a function of fit taking pt+i as given. [4.16] becomes 

e r e  \  _  ^  ~ f^tPi  — ht  {f l t \Pt+l)  "^Pt (1 — Pt)  
h l { f u \ P t - r l )  —  - T  

(1 - P t )  

Q - h t P i -'^';:,\zi\ f 2 p t { i - p t )  

{ I - P t ) -

_  Q + fup^ — 2(?pt+i  

(1  -  Pt)'  

and [4.18] becomes 

.4(4-1 = At + 

( 4.18) 

(4.53) 

(4.54) 

(4.55) 

p i ( p { ^  "- ( l -Zi t ) )  

+2p.(i-p.)»(t-' (i-°';,T;:;r,'0) 

_ + ( l -p=)»( t - . ( l -2±Zu5^))  ^ 

This allows the translation of the problem into a one-dimensional problem for purposes of dynamic 

programming. The sole state variable is pt+i, and [4.55] is optimized with respect to fu for the chosen 

Pt-r-i- To make the calculation useful for dynamic programming, it is actually the chzmge. the ma.ximal 

value of 

A-'it (/it) = -^t+i (/it) — -•it (4.56) 

that is calculated, rather than itself, so that the calculated value of selecting pj+i is useful regardless 

of the prior value of .4t,  which will  vary with the choices made in periods prior to t .  

Given that the available numeric libraries minimize rather than ma.ximize, a new function y  is defined 

as 
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y =  

- -piz i t  - 2pt (1 - Pt)  Z2t - (1 - P t f  Z 3 t  

_2_ / I  ^  \  ^  f  QPt+l  -  fuPf \  

,1  „  {Q fl tPt  — ~QPt-r l  \  , ,  ^ I j 
with the deriv'ative 

~ = -P tx( /u) -2pt ( l -p t )x( /2 t ( /u) )^  
" T L f  4 j l t  

" / I t  
2 

rv2,f,-l ft _ f \ _ o„. n _ <fi—•• f-i etc w Pi = -pi^-' (1 - f u )  - 2pt (1 - Pt)  (1 - f 2 t  { f i t ) )  

O 
- { l - p t ) - ^ - ' { l - f 3 t { f u ) )  ^  -

P t  (1 -  P t )  

i l - P t ) -
= -pf$-i(l-/u) + 2pf^-^(l-/2£) 

(1 - f z t )  (4.58) 

When 1/ is minimized, the increase in At+i is maximal for a given pt and pt+i-

Note that while the derivative of y  has been calculated, this may not be possiblefor some models. 

However, the optimization routines in standard libraries are both faster and more efficient when this 

derivative is available. 

Also note that the conversion of the problem to use discrete state space yields a different starting 

point than the actual mass selection solution. While the frequencies are as near to those reached by mass 

selection as permitted by the starting discretization, the ft Eire actually different, as they are selected to 

maximize in the subsequent generation. As such, the starting point is actually a superior solution 

to the mass selection solution. 

4.5.2 Solving the model 

At this stage, the goal is a clean and easily understood routine, and no attempts have been made 

at optimization of the algorithm. The one-dimensional problem is a necessar>- first step towards the 

multidimensional algorithm of interest, and follows the flowchart of Figure 3.10 except as noted. 

To provide the initial configuration for the algorithm described above, the mass selection solution is 

taken as the starting value. An array of bubbles is created with indices from zero to the total number of 
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generations considered, totGenerations. Each of these bubbles is centered around the corresponding 

mass selection gene frequency. Bubble 0 has a single bubblette, as the starting frequency is a parcuneter 

of the problem. Each of the other bubbles receive bubblettes to reach from .05 beneath the mass 

selection value to as close as possible to 1.0 without exceeding it, and a grain of .05 is used for all 

generations. This is far lairger than is needed, but by extending beyond ciU conceivable \^ues, issues 

related to stepping past boundaries are avoided for the moment. 

The function bestValOis defined, which returns the best possible increase in the \.^ue of the 

objective function that can be reached from a specified bubble. This is the change in value from that 

particular choice of frequency at that generation, including the value from all subsequent choices. 

The function works by sequentially considering a subset of the possible choices for the next period's 

major gene frequency. However, before it does so. it checks to see if this bubblette has already been 

considered. If so. it returns the previously calculated value. Failing this, an initial guess, which will for 

the moment cind for illustrative purposes be assumed to be 0, as to the offset from the center of the next 

bubble, or how many allowed states away from the center of the bubble, is made. The corresponding 

bubblette in the next generation is queried for its value, to which the gain resulting from this 

tentative choice is added, cind the result placed in testVal. testVaJ. is also copied to the local \-ariable 

th-isBest, which stores the best value of the best step foimd to date. 

The routine then evaluates an offset one greater than the first considered and calculates its value 

in the same way.. If the result is better than that stored in thisBest, thisBest is updated, and the 

process repeated for the next larger offset. 

If the result of the first step is inferior to thisBest. the direction is switched; the offset one less 

than the stating value is considered. 

The process is repeated until the next value considered declines. At this time, the prior step is 

recognized as the best, the step stored in nextp, eind the value returned. 

It is important to note at this time that the bubblette with the highest value will not necessarily be 

chosen. In fact, it seems that tiiis happens only on rare occasions. As described in §3.4.3 it is not only 

the value of the bubblette itself that matters, but also the \'alue added in stepping to that bubblette. 

As explained earlier, adding .5 while reaching a bubblette with value .3 has greater \'alue than adding 

.2 while reaching a bubblette with value .4. Additionally, though the value of the bubblette is fixed 

regardless of the step taken to reach it, the value added reaching it will varj- depending upon the prior 

state. Thus different bubblettes will be chosen from different prior states. In non-trivial problems, it is 

expected that there will be a tradeoff between the stepping gain cind the value of the bubblette; if this 
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were not the case, both could be maximized. 

bestValOdoes have a "special" case for the final period. The last choice is maxle in the penultimate 

generation. bestVeiK) is called again, but recognizes that it is called for the final generations, and 

simply returns (2p — 1) a, the contribution of the major gene in the final period. 

The fimction operates recursively. As such, querj^ing the sole bubblette in generation 0 for its \-alue 

results in calculation of needed values for ciU subsequent generations. When a solution is reached, the 

bubbles are "collapsed." New bubbles are created centered about the path chosen, and with the grain 

reduced. Additionally, hints axe stored regarding the "expected" path from bubblette to bubblette. 

For the center bubblettes, this is simply the next centered bubblette. For other bubblettes in the 

region calculated in the prior iteration, the hint is the bubblette at the same point in space which was 

previously reached. Due to the collapsing, there will be somewhat arbitrary choices made as to which 

bubblettes of the prior iteration correspond to which in the new. However, rather then spend effort and 

computation on the matter, this is simply left to the default rounding performed by Fortran: at most, 

it will be off by a single state in any dimension, and adjacent states will be checked in any event. 

A minimum of two bubblettes above and below the center will be created within each bubble. 

However, a check is made to determine how many states were actually checked in that direction for that 

bubble, and if larger than two, this quantity is used instead. Furthermore, a check is made to insure 

that no boundarj' states were chosen in the final solution-this could indicate that a better state existed 

after the boundary. In this case, the boundary is doubled, and the iteration repeated with the same 

grain. This is different than the algorithm used for multiple state variables as described in Figure 3.10, 

for which additional bubbles are created when a boundary is reached. 

The process is repeated until the grain of the choice variables are satisfactorily small, with the final 

iteration yielding the reported solution. 

Using the equations from [Dekkers 98], it is possible to use standard iterative methods to find the 

optimal \'alues. However, these equations do not solve the problem, but rather reduce it to a point at 

which iteration may be used to find the solution. The algorithm reaches the same result as Dekkers" 

method. Both outputs are reproduced in .Appendix C. 

4.5.3 Mechanics of conversion to frequency space 

Building on the foundation laid in §4.5.2, precise rules can be designed to finish the conversion of 

the model from the choice variables ft to a state space model. .A.s discussed in §3.6.1, a fundamental 

chcinge to the problem has been made while converting from choice space to frequency space, and the 



www.manaraa.com

59 

reduction from a two-dimensional search space to a single-dimensional space. While the same answer 

will be reached as the optimal solution, the starting point is not the same as the mass selection solution. 

With pt+v chosen, ft should be chosen to meiximize AAt+i,. The optimization problem is 

maxZ, — 
f t  

[ f i tP t  f2 tP t  (1 ~ Pt )  — QPt+i] + M [ f i tP i  +  /2t2pt (1 ~ Pt )  +  fz t  ( l  — Pt) ]  

= ^  {Pi+ 2p£ (1  -  Pt )  z - z t  +  (1  -  phs t )  }  

[ f i tP i  +  f2 tP t  (1 — Pt )  — QPt-f-i] H- [ f i tP i  + /2t2pt (1 — Pt )  + /st (l — Pt)] (4.59) 

where the constraint associated with A is the transition rule for pt-ri from equation [4.17), and that with 

fi is the constraint that a total fraction Q be selected from [4.17. Solving this would require cin iterative 

solution, due to the presence of inverses of the normal cumulative distribution function. As such, it is 

simpler to use a routine from a standard library. Still, such routines require boundaries for the search. 

f i t  will be used as the choice variable in the optimization, with f o t  determined by this choice. In 

any "sane" choice, *• 

f i t  >  f 2 t  (4.60) 

In the general case, a lower bound for fu is found by setting [4.60] to equality. Using the superscript 

"0" to denote an initial floor for the value, the initial limit simplifies to 

/?tmm = Q— (-1.61) 
Pt  

For sufficiently large p t ,  setting f i t  and f o t  equal causes selection of more than Q. In this case, fu 

must be increased and fot decreased. In this case, t he new floor will still allocate nothing, or as close to 

nothing as allocated by the algorithm, to fzt- As such, using the superscript "1"' to denote the alternate 

bound, [4.16] reduces to 

fuminPl + furmn^Pt (1 - Pf) = <9 (4.62) 

which combined with [4.17] yields tv/o equations in two unknowns for the \'ulue of fit that minimizes 

ij as defined in [4.57]. As fu rises from this value, fzt must diminish, and /at will rise. Solving the 

equations, 

p f  2p£(l-pt) f i t  Q  

PF Pt(l-Pt) . . Qpf+1 . 

^This is not true for over-domincuit genes, in which case this constraint is left out. However, the constraint only speeds 
calculation by limiting the domain jind is not jxtually necessarj'. 
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P t  2 ( 1 - p f )  
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 1 
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P t  ( 1 - P t )  1 1 

P t  Pt+i 

f i t  

f 2 t  

Q  

a-p t )  -2(1-pe)  

- P t  P t  

P t  P t  { I  -  P t )  -  P t 2  { I  -  P t )  

Q  

a - P t )  - 2 { i - p t )  

-Pt Pt 

Pt P t  (1 -  P t )  

1 

pt+i 

1 

p t ^ i  

Q  

Pt (1 - Pt) 

Q  

P T  (1  -  Pt)  

Q i 2 p ,  +  i - l )  
pr 

Qd-rPt + l) 
P t ( l -P t )  

(1 -  P t )  - 2(1 - p t ) p t + i  

P t  + P t P t - r l  

(1-pt) (1 -2pt-f-L) 

P t  (1  +  Pt-Hl)  

of which only the first is used. 

-A.n upper bound must similarly be found. For 

P t  < x/Q 

it is possible to use all of the homozygotes, and 

For larger vcdues of pt, 

fO =  I  /  I t m a x  ^  

/"• = — 
J Itmax ^ 

P t  

(4.63) 

(-1.64) 

(4.65) 

(4.66) 

selects entirely from type 1, and is used as the maximum. With these ccdculations done, the I>ISL 

routine DUVMIDO is used to solve the upper row of [4.63j for fu-

For this single state viable model, each generation has its own bubble; the bubble for any successor 

state chosen is known with certainty. For the initial pass, sufficient bubblettes are used such that the full 

range (0,1) is a%'ailable in each choice generation, save that a single bubblette is available for generation 

0, as its gene frequency is predetermined as part of the problem. 

An initicd grain of .05 is set for pj in all generations, and the bubblette of generation 0 is asked for 

its value. 
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When a bubblette is asked for its value, it firsts checks to see if it has been previously calculated. 

If so, it returns its value. If not, it checks itself for a hint from prior iterations, or runs of the securch 

algorithm, choosing a hint of 0 if none is found. Having established the hint, a "sanity check" is made 

on the hint: the gene frequency will never be permitted to decrease from generation to generation; any 

such step is wrong." As such, if the hint suggests reducing the next generation's frequency below the 

present level, it is rejected, and increased to a "sane" level. Similarly, a sanity check is made to insure 

that the pt+i considered is actUciUy a possible transition. 

This achieved, the value of the hint is ccilculated. The bubblette from the next generation corre­

sponding to the hint is queried, and A.4t+i is added to this value. This is stored as the best tentative 

\ulue, and the next higher bubblette in the next generation is checked. If that bubblette is better, it 

becomes the new hint, cmd the search proceeds in that direction as long as progress is made. If inferior, 

the next lower bubblette is checked, and the search proceeds in that direction as long as it is successful. 

However, if the initial hint is less thcin 0, either from a sanity check or the initial hint, the search starts 

first in the negative direction and switches to positive if appropriate. 

Once a bubblette selects a value in this manner, it stores the final hint, indicating the next state 

chosen, its value, and the fact of calculation. It then returns its value as the result of bestValO. .\fter 

the initial bubblette returns a value, the optimal path can be found by stepping from bubble to bubble, 

which is the method used by candidateFromBubblesO to form a reportable solution. 

With a solution found, einother iteration is made. If any of the steps chosen as optimal were on the 

boundary- of a bubblette, it is not clear that a further step was not desirable. That boundarj- is doubled 

and the process repeated with the same grain. If no boundarj.- states were used, the optimal solution 

becomes the base frequency of the next solution. 

Initially, the boundaries w^ere set by doubling one more than the highest state actually used in 

that direction (above or below the base), with a minimum of ten. Using one processor of a ducd 

Pentium n/333 machine, this resulted in a solution time of 40.1 seconds (also using zero rather than 

the actual value for hints). Changing this to one laxger than was actuciUy used, with a minimum of 

two, significantly improved performance, to 27.7 seconds, or a reduction in processing time of about 

one-third. Enabling the hints further reduced processing time to 16.7 seconds, only a third of the 

initial aunount. Interestingly, storing fu to use as a hint in subsequent iterations actually increased the 

execution time by a marginal amount, to 16.9 seconds. 

-This is not true in the case of overdominance, which is not considered here. 
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4.5.4 Adding discounting 

To this point, the only concern has been the maximum amount of progress that can be made, and 

only the final generation has been considered. It is not difiicult, however, to modify* the work done to 

this point to allow for an infinite horizon. 

Pre\^ously, the program considered the effect of the major gene only in the final generation, and 

added the gain in polygenic value from each generation creating a sum equal to the ^'alue in the final 

generation. 

It is a property of the genetic model that changes in polygenic value cire permanent. As such, a 

change in generation t increases ail generations by the sajne amiount. To calculate a discounted vcilue, 

bestVaiC) need only be modified to apply the identity in [3.5| to the calculated value for 

discount this value and that returned firom nextValO, add the current value of the major gene, and 

multiply both by the discount fax:tor of [3.4]. This is accomplished by a simple if/then structure in 

bestValC). To stay with a single code base, these actions are taken only if the variable discount ha^ 

a non-zero v-alue. The only other change required is to change the print routine for tentative solutions 

such that the present value of each generation and its future is displayed. The present value of the choice 

made is reported for each generation. This is not the same as the present value of the generation; the 

\^ue of the current state is not included. By cedculating in this manner, it is easier to compare the 

relative \-alue of choices later when choosing whether or not to test. 

4.5.5 Using mass selection as a default choice 

While the simplistic approach of using a very long planning horizon and increasing until the final 

generation has no present value could work, it is not guciranteed to do so without significant program­

ming effort, as the library routines used have aji upper bound on the pi for which inverses of distribution 

fimctions may be calculated. However, a better method exists. In the simple approach, the entire value 

of the added generation is an increase, though it is possibly offset by different actions in prior gener­

ations (the steps that are optimal for n and n -t-1 generations cire not the same, and thus the first n 

steps of the n + 1 generation solution are worth less than the n generation solution). .A. more efficient 

solution than ignoring generations after n is to switch to mass selection after n, and to calculate the 

present value in that maimer. 

The only further modification required is to change bestVaJ.()such that in the final generation, it 

returns the present discounted value of future generations under mass selection. The solution for am 

infinite horizon cam then be found by eillowing the finite horizon algorithm to run until it finds no value 
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in adding an additional generation of selection. 

4.5.6 The value of mciss selection 

Starting with 

-Tit ~^-2t - r / i -

-2^  f t -(T 

vields 

or 

and 

+ ^ { - X 2 t ) P t  (1 -Pt) + (1 - P t ) '  -Q 

^ { - x i t )pi +  #  (-xif +  P t  (1 -Pf) + ̂  (-xu + 2^) (1 -pt)" - Q 

L  =  ̂ { - x u ) p - t  • \ r ^ { - X 2 t ) P t  ( 1  -  P t )  + ^ ( - r 3 t )  ( 1  - P j ) "  - Q  

L' -  aruip-(-a:it)pf + (arii -  0-^-xu + Pt (1-pt) 

+ {^u - 2^) <Z>" (-xu + 2^) (1 -pt)" 

= 0 (4.67) 

(-4.68) 

(4.69) 

These equations are passed to a numeric routine for solution; reducing to the single variable xu speeds 

calculation. The resultant values of Gt are calculated and discounted until ptJri is within the constant 

peps, which is chosen as the limit of resolution for gene frequency, of 1.0. pt is then accepted as being 

equal to one, and the gain in polygenic value becomes fixed for all later generations; [3.7] is used to add 

the value of all future gain. 

4.5.7 Testing costs 

The results so far consider only the revenue from the breeding program, and not the associated 

costs. Realistically, a cost should be imposed when animals are tested for the gene, and the breeding 

program should continue only so long as the benefits exceed the cost, the benefit being the gain in 

excess of the gain from mass selection. The algorithm changes only sUghtly to handle this variation: 

the best possible breeding choice is still foimd, but its value is compared to the value of switching to 

mass selection. If it does not exceed mass selection by the testing cost c, the switch is made. Using 

a discount rate of 8% and a test cost of .1 with Dekkers' parameters, the transition to mass selection 

occurs after the seventh generation. Program output is included in Appendix C. 
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4.5.8 Cheinging the horizon 

The largest computational cost is not in calculating the values of the states, but in prepcu±ig the 

bubblettes for this computation. Once it is know^-n that states beyond a given generation are not used, 

there is no reason to continue calculating these states. Similarly, if a breeding program has not switched 

to mass selection, a longer program may be desirable. The control \'ariable smartShrinkGens is added 

to handle this situation. 

With smaxtShrinkGens set, if mass selection is not chosen in the final choice generation, the time 

horizon is increased by one. The solution of the current iteration, augmented by mass selection for the 

final generation, is taken as the center, cind the next iteration is run with the same grain. 

Conversely, if the switch to mass selection occurs before the final generation, the generation in which 

the switch occurs becomes the final generation. However, the grain is reduced, as the available states 

are a subset of the states already considered. 

This final model can be expressed as 

the selection of a length T of the optimal breeding program, and the selection of ft for all periods of 

the program so as to optimize present discoimted value at the beginning of the program. 

T-l ( f t )  
max L 

T.{fr.o<t<r-i} 

(4.70) 
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CHAPTER 5 THE GENETIC PROBLEM WITH DISEQUILIBRIUM 

The model developed in [4.70] is incomplete in several ways. The first omission to be considered is 

chat of gametic phase disequilibrium between the major gene and polygenes. While not considered to 

this point, the selection intensity on the polygenes is weaker for type BB than for Bb , which is in turn 

weaker than for bb. This is a result of the higher fractions selected from BB and Bb-zji animal of type 

BB does not need as high a polygenic value as one of type bb to be selected. 

.\s with the first model, the actual choice vciriables, ft, will not be used. Rather than a single 

state viable and an internal optimization given that variable, a pair of state \'ariables will now be 

used: pt- and the difference between the average polygenic values associated with the B and b gametes. 

5.1 Gametic phase disequilibrium 

The single-dimensional approach ignores the effects of "gametic phase disequilibrium.a well known 

consequence of selection [Falconer, page 202|. Under selection, the superior homozygotes, BB, are 

subject to a lesser selection intensity for polygenic effects than the other types [Dekkers 98]; and as a 

consequence, have a lower polygenic value. Rather than a single average polygenic value now two 

values, AB.t and Ab,t must be distinguished, reflecting average polygenic values for gametes carrj-ing the 

B and b alleles, respectively. As each individual gets two gametes, one from each parent, the average 

polygenic values for BB, Bb, and bb are then, respectively, 2Ab.£, Ae.t + Ab.t^ aJid 2Ab_f The overall 

average polygenic value is then a weighted average. 

Similarly to the single-dimsional problem, these average values can be written as recursive equations: 

Ae.t — A(,,f 

At — 2ptAB,t + 2 (1 — pt) Afc.t (5.1) 

-•Is.t+i — 
/itPt + f 2 tP t  (1 ~Pt )  k  ('•is.t + + t-itO') 

f l tP t  +  f 2 tP t  (1  -  Pt )  
(5.2) 

and 

-"Ifc.t+i — 
f 2 tP t  (1  —Pt)  k  +  -^b . t  + i2 tO ' )  +/3t  ( ] -  —PtY  +  kh tCr)  

1 -  /up?  -  f 2 t P t  (1  -P t )  
(5.3) 



www.manaraa.com

66 

the first of which is equation 10 in [Dekkers 98|. Note that this usage differs from Dekkers' introduction 

of We.t = Pt-^Bu and Wbx = (1 — pt) While this change was advantageous for the use of optinial 

control, it would introduce complications for the methods developed below. The raw polygenic values 

have the same units, which allows their difference to be defined, while the W are weighted to reflect 

their contributions to the overall average polygenic value. 

5.2 Finding the state variables 

As before, there are more choice variables than state variables, ajid non-linearity makes the actual 

choice %^uriables fmt impracticcd for dj-namic programming. Two state variables are now needed, and the 

mechanism for maximizing [4.55] is now irrelevant. The choice of pt+i and a single additional variable 

for period t + 1 will exactly define fmt, as [4.16], [5.2], and [5.3] create three equations in the three 

unknowns fmt -

The new fitness function for a given generation, comparable to [2.10] is now 

Gt = o, {2pt — 1) + 2pt.4e.t +2(1 — pt) Ab.t (5.4) 

Howe%'er, substituting [5.2] and [5.3] into [5.4] does not yield a simple result such as [4.18], in which 

the change in .-i is easily isolated. Instead, a dependence upon two variables of the prior generation, 

Abu and remains. In order to create a useful cdgorithm, it is necessary to completely isolate the 

effects of the past states and the choices made; it is necessar>- to have an expression such as [4.18] which 

describes the effect of the choice on the objective function. 

One way of doing this is to find an expression for in terms of As . t  — Ab . t i  P t i  P t ^ i -

and f t .  It is useful to define polygenic disequilibrium 

dt = A b.i — Ab.t (5.5) 

Using the relation that 

i  =  J  (5.6) 

[Falconer, equation 11.5], noting that the denominator of [5.2] is equal to Qpt+i, and rearranging terms. 

-•i-B.t+i = 
_  +  htP t  ( i  —Pt )  k  +p^k^ i tO '  +  Pt  (1  — P t )  4 -2 tO"  

Q P t + i  

[/uP? + f2Pt (1 - Pt ) ]  As^ t  - f2tPt (1 -P t )  I (Ag.t - Aft.t) +P^zu<j  +  Pt  (1 -pt) k^2 tO '  

QPt+i 
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Qpt+iAB.t - htPt (1 -P t )  \dt pjhzucrPt (1 ~ P t )  k z 2 t ( r  

Q p t + i  

T f 2 t P t { l - P t ) j  ,  p U u + P t i l - P t ) Z 2 t  _  
= Ae.t d t - i  TTT a  ( o . i )  

2<5pt+i ^Qpt+i 

similarly. 

-•1, b.t-tL 
htPt (1 ~ Pt)  4 -I- +pt (1 — Pt)  ^^2tcr 4- /at  (1 — Pt)" .-Ifr. t  + (1 — Pt)" k~3t<^ 

Q  —  Q p t + i  

f2tPt (1 — Pt)  k {-^B.t — -ib.t) + ^fzt (1 — Pt)" +  f2tPt (1 — Pt) |  Ab .t 

Q (1 ~ Pt + l) 

Pt (1 - Pt)  k^2t + (1 - Pt)" kz3t 
^  g { i - P t + i )  

[ /3t( l -p£)-+/2£Pt( l -Pt)]  l /2tP£ ( l -Pt)  ,  

Q { l - p t + i )  •  ' • ' " ^ 2  Q ( l - p t ^ O  '  

,  1 Pt (1 -Pt)  ̂ 2f + (1 -Pt)"23t  

2 Q (1 — Pt + l) 

[ Q  -  f u p f  -  /2t2pt  (I - Pt)  +  f2tPt (1 - Pt)]  T 1 /2tPt  (1 - Pt )  

Q(l -Pt^i)  -  ' - '^2 Q(l-pt+i)  '  

1- Pt (1 — Pt)  22t  + (1 — Pt)" 23t  

^2 Q(l -Pt+i)  

T ,  l /2tP£(l-Pt)  J , lp£(l -pt) . :2t  +  ( l -pt) '^3f  _ 
(5.8) 

yielding 

^t+i = -•J-e.t+i ~ -•i6.£+l 

T 1 /2tPt(l-P t )  ,  ,  1  PF^i t+Pt  (1-Pt )  •^2t  
= --le.t — 7^ ^ "t + :r^ O" 

--"Ifr.t — 

2Q Pt+i 

1 /2tPt(l-P t )  

2Q Pt-hi 

2Q (1-pt+i)  

1 Pt  (1  -P t )  22£ +  (1  -P t )"  .^St  
"t — r: : cr 

2g (1  — Pt - r l )  

=  d t -
2Q 

72tPt(l -  Pt) htPt (1 - Pt) 

Pt+i (1 — Pt+i) 

2Q 
Pizu+Pt0--Pt)z2t  Pt(l-Pt)z2f +(1-Pt)"2:  3t 

Pt+1 (1 — Pt + l) 

— di — '^f'^tPt (1 — Pt) 

+ 
2Q 

PI 
Pt-i-i 

•zu +Pt (1 -P t )  

^ — Pt + I + Pt-rl 
.P t+1  (1  — Pt+l )  .  

1 

d t  

1 

.Pt+1 1 — Pt+1. 

_ (1 -Pt ) - .  
Z2t — JZ T^St 

(1-pt+i)  

1 ,  Pt{ l -P t )  J  
~ "d — 7:7=: f2t T: r"t 

2 Q  " Pt+1 (1 — Pt+l) 

+ 
2Q 

Pt  _  P t ( l -P t )  (1-Pt ) '  _  
^•zit — ^ •'2£ — t;—r—r^3t 

Pt+l Pt+i ( i—Pt+l )  (1  -  Pt+l)  
(5.9) 
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and 
T T f 2 t P t  { I  -  P t )  f  T  T  ̂ , f l t p ^ i u 0 - - t f 2 t p t i l - p t ) i 2 t 0 -

- .-iB.. = 2QP.,. + mr, 

Before proceeding to .4.6,t+i^ it is useful to derive 

1 - Pt+i = ^ - ̂  {/itPf + htPt (1 - pt)} 

_  Q  - fitPT - f 2 tP t  (1  -  Pt)  
Q 

hPl  +  f2 t2p t  { l -p t )+  h t  (1 - Pt) - /itP? - f i tP t  (1 - Pt) 
Q  

= ^{f2 tPt{ l -P i )h t i^ -Pl )}  (5 .11)  

< 5 ( 1 -  Pt -h l )  — f2 tP t  ( 1  —  Pt)  2  (-"is. t  +  -I" h tCr )  

+/3£ (1 — Pt} '  ^-46.4 + 

— [ f2 tP t  (1 - Pt )  + f z t  (l — Pt )] -"ift.t + f 2 tP t  (1 — Pt )  2  — M. t )  

1 . 2 1 -
-^ / • i tP t (1 — Pt)  + /3t (1 — Pt )~  

=  Q (1  — Pt+l )  -•id. t  +  f 2 tP t  (1 — P t )  2 — --ift.t) 

1 •> 1 
^htPt (1 - Pt) ^J3fO- + h i  (1 - Pt)' 2^3fO- (5.12) 

then 

7 T /2tPf (1 -Pf) T 7  \  , /2fPt( l  -Pf)'2tO- + /3 t ( l - P t )"J3tO- ,-,o^ 
^  2g( l -p ,«)  

allowing the calculation, 

Adt^l = (--iB.t + l  — -46.£-rL) — "" -^b.t) 

f 2 tP t  {1  -  Pt )  f  J  T  \  ,  f v tp l iucr  +  f2 tP t { l -P t ) i2 tO-

= 2Qp,« + 2Qp,« 

f 2 tP t  (I - Pt) , _ /2tPt (1 - Pt )  i2 ta -  + /3t (1 - Pt ) '  h tO-

2 ( 5 ( 1 — P t + i )  '  2 Q ( 1 — P t + i )  

_ /2Pt(l- P t )  ,  

2QPt+l (1 — Pt-M) 

, Pt (1 -P t+v)Zu  + P t  ( 1  - P t )^2 t  +  ( 1  - P t ) ' P £  + l23t _ 
2ep ,„ ( i -p ,«)  "  

Also note that [o.lOj and [5.13] Ccin be written as 

7 7 , v"^ /2£Pt (1 — Pt) /• 7 T ^ , /itPt UtO" +/2tP£ (1 — Pt) i2£0' 
AB.r = 2Qpt., (--iB. ---1,,) + 20^-
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T-l 

— ^ (5.15) 
£=0 

and 
T-l 

Ab,T = '^6.0 + ^ •^-46.t+i (5.16) 
f=0 

and 
r-i 

= -"13.0 + (5.17) 
£=0 

Which means that, as was true in the case of a single state variable, changes in the average polygenic 

value are permanent. However, as [5.41 depends upon pt, the value of AAg.f is not the same in all 

future generations, making calculations such as [4.42], which calculates the present value of a change, 

impossible. 

Instead, consider 

•^£+1 — = 2p£+iAb£+i + 2 (1 — pt+i)-^6.£+i — 2pf.4B.£ ~ 2 (1 — Pt) Aft.e 

— 2.46.£+I + 2 p t - i - i  — .-li.i^i) — 2-4fr,t — 2pf (.4B.£ — -ib.t) 

— 2 (.4(,.i4-i — -•l6,£) + 2pt-i-idt+i — 2ptdt 

_  ^  f  f 2 t P t  { I  ~  P t )  ,  f 2 t P t  { I  -  P t )  i 2 t c r  +  f 3 t  { I  -  p t f  h t o - \  

\ 2 Q { l - p t ^ , )  '  2Q(l -p t+i )  J  

+2pt-^\dtJri — 2pt.dt 

h t P t  (1 — P£) [ d t  - + •  i2£0'] + f z t  (1 - P t ) '  f'sfO" ,  o  J  o „  J  
= TTTi T + 2pt+idt+i - 2ptdt 

Q  ( 1  ~  P t + i )  

P t  -  P t )  [ f 2 t d t  +  Z 2 t c r ]  +  ( 1  -  P t ) ' Z 3 t O -  ,  J  / -
= 7771 ^ ^ 2pt+idt+i - 2ptdt (o.l8) 

<3 (1 — P£t-I) 

which is written entirely in terms of the state vciriables p t  and d t ,  and fractions which are functions of 

these choice variables. Thus, [5.18] can be used to write the present value of the change in state as 

pv = [.-it+i — .4t] (5.19) 
J. L J 

5.2.1 The state 

The state at any time will be described by the pair {p t ,d i ) ,  where d t  is the disequilibrium at time t, 

d t  = -4B,£ — .4(,,t (5.20) 

Rather than calculating fu to maximize the polygenic gain, the successor states pt+i and dt+i are 

chosen, and the choice made fully dictates ft- Equations [4.17], [5.14], and [4.21] constitute a system 

of three equations in the three unknowns ft, which czm be solved by a library routine. As a practical 

matter. [4.21] is used to eliminate f^t from the system to reduce computation. 
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5.2.2 Finding the choice variables 

Elather than reiving upon library routines, a first order N'ewton-Raphson search is used to determine 

the choice v'ariables ft that accompany a change in state from (ptydt) to {pt+ijdt+i). The maximal and 

minimal values for fu and f2t are cjdculated, and a second order secirch is started at the midpoint of 

p o s s i b l e  v a l u e s  f o r  f 2 t -

5.2.3 Mass selection with gametic phetse disequilibrium 

When ignoring disequilibrium, all genotypes had the same polygenic distribution, and mass selection 

truncation points xj were calculated by setting 

h~a h'a 
xit H = X2£ - X3t ( 4.-14) 

a cr 

This is no longer the case under disequilibrium; the new rule is 

, SAe.t — a , +-^6,t , 2.46.4 + a 
Xit "I — X2t H Z — (0.21) 

cr (J cr 

which can be rewxitten as 

f2Ab^t + "^dt — a\ f2Ab_t+dt\ , f2Ab,t + o.\ 
lu + ; j = j = X„ + 

X i t  + ~ ~ ~ °) (5.23) 

5.2.4 Translation from state to choice variables 

While working with the state variables d zind p is sufficient to describe the behavior of the system, it 

is not enough to quantitatively evaluate a path: the original fi, Xt and zt are needed in equations such 

as [5.18] to determine the value of the proposed state to the breeder. Equations [5.18], [5.9], and [4.17] 

are three equations in the three choice variables, determining them exactly. Wliile it is not possible to 

write an explicit, closed form solution, reducing the equations to a single variable in a single unknown 

ciUow^s solving with a fast numeric routine. 

As f i t  has already been eliminated from [5.18], and f ^ t  has genercdly been treated as cin artifact of 

the choice of /u and fot, /at seems to be the natural choice. Manipulating [4.17] yields 

r  QPt+l  — f2 tP t  { I  — P t )  fu = ^ (0-24) 

or 
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which can in turn be used in [4.21] to get 

Q _ Qp.t.-y.(l-p.)p2 _ 2p, (1 _ p,) /2, 
ht — 

{ i - P t Y  

Q  —  Q p t + l  + f2tPt (1 — Pt) — "^Pt (1 — Pt) f 2 t  

( l - p t f  

Q{l-pt+l) -Ptil-Pt) f2t 

a - P t Y  
(5.25) 

both of which are placed into [5.9], 

1 ^ P t ( l -P i )  J  
i j  =  d t -  d t + i  -  ̂ h t -  7 Z  ; ;  r d t  

2y pt+i (1 — pt-t-i) 

1  [" PF _ ^ QPt+i - f2tPt (1  -P t )  
2Q " V Pt 

+ + Pt (1 - p t )  
1 

.Pt+i 1 ~ Pf+i 
=  { f 2 t )  

( 1 — P t ) "  (  Q  { ^  —  P t  +  l )  —  P i  —  P t )  f 2 t  

( l -p t  +  l )  y  

which has a derivative of 

1  p t ( l - P f )  dy 

d f z  

+ 

2Qpt+i  (1  -p t+ i )  

1 

(1-Pt ) -

dt 

(5.26) 

2Q 
P ~ t  (  Q p t  +  l -  f 2 t P t { l - P t ) \  P t )  

X 

+pt (1 - p t )  

Pt 
1 

Pt 

.pt-\-i 1—Pt+i .  
X { f 2 t )  

(1 -  Pt)"  ^  / Q (1 -  Pt+l )  -  Pf (1 - Pt) /2t \ -Pt 

( i  —pt+i )  I  ( i - p t ) '  y 1  —Pt  

q-  P t ( i -Pf )  

2Q Pt-rl (1 — Pt + l) 
—  +  ( 1  - P t  +  i ) x i  -  ( 1  -  2pt + l)x{f2t) -pt + lX3 
(J 

1 Pt (l-P t )  
2Q Pt+i (1 — Pt+i) 

1_ 
2Q 

dt 

P' t  f Q p t + l  -  f2tPt (1 - Pt) \ 1 - Pt 
X ' * 

.Pt-hi V 

+Pt (1 - Pt) 

Pt 
1 

Pt 

X { f 2 t )  
.Pt + l 1—Pt+1.  

(1  -  Pt)"  f  Q j l -  P t + l )  - Pt (1 - Pt) /2t \ 

(1-p t+l )  \  (1-p t )"  

1 Pt ( l -P t )  
2QPt+l  (1-Pt+l )  '  

1 rpt (1 - Pt) f Qpt+i - /2fPt (1 - Pt) 
X I ^ 

pt-M \ m 2Q 

+Pt (1  -p t )  
.Pt+l • Pt+l. 

x( /2£)  

Pt 

J  I - Pt 
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P t  (1 - P t ) ^  (  QiX - P t + i )  - P t  il- P t ) f 2 t  

(1 - p t + i )  

P t  (1 - P t ) ,  
2 Q  

1 

( l -P t ) -

- f  \  P T  J  
P t + l  (1 — P t + i )  P t + l  

.Pt-^i 1 — Pf+i  

P t { l - P t )  c r  

^ i h t )  +  
(wT? ; 

1—Pt+i 

dt . f Qpt+i - h t P t  {I -  P t )  
(1  -  pt+i )  X 

V pr Pt+1 (1 — Pt+i) 2(5 

—  ̂  i f z t )  +  P t  +  L ^  

which can be used to solve for the vector ft that yields the desired transition between states. 

f  Q ( ^ - - P t - f L )  -  P t  j l  -  P t )  f 2 t \  

V a - p t ) -  J .  
(5.27; 

5.2.5 Bounds for the fractions that can be selected 

The limits on values must also avoid the case where so much fi is used that /s must exceed one. 

To find this limit, set 

f z t  =  1 (5.28) 

and substitute [5.24| into [4.21] to get 

Q 

Q i l - P t + i )  -  (1 - Pt)' 

f 2 m i n  

f l m a x  

Q P t  +  l  -  f 2 t P t  —  P t )  _ 2  ,  f  r , „  / - I  \  
o Pt ~ /2£2pt (1 -P() + (1 -  P t )  

Pt 

f 2 t P t  (1 — Pt) 

Q(1-P £ + i )  - ( 1 - P f ) "  

Pt (1 - Pt) 

Q p t ^ ,  -

Pt 

Q p t + i  _ Q(l -pt+i) - (1 - Pt)' 
PI Pt(l-Pt) 

Q(pt+i (1 - Pt) - Pt (1 -pt-f-O) -pt (1 -Pt)' 
Pt (1 - Pt) 

Q (pt+i - ptpt+i - pt + p^) - pt {'i-- Pt)' 

Pt (1 - Pt) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

and the case where /a would be less than zero: 

Q 

Q ( i  - P t + i )  

f2max 

Q P t  +  L  -  f l t P t  { I  -  P t )  _ 2  , f o_ M , n 
:> Pt + /2t2pt (1 - p t ) + 0  

P t  

f 2 t P t  (1 - Pt) 

Q O - - P t + l )  

P t  (1 - Pt) 

(5.33) 

(5.34) 

(5.35) 
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An initial guess of 

rO f2min "t" f2max / -
Ht = 2 ' 

is made, and a Newton Raphson routine is used to find the value for f t  which sets the y  of [5-261 equal 

to zero. 

5.2.6 Changes in bubble structure from the one-dimensional model 

In the one-dimensional model of Chapter 4, each generation of the breeding program had an assigned 

bubble. If a state selected in the final solution lay on the boundax>' of a bubble, the bubbles were re-

centered about this tentative solution. The iteration was then repeated with the same grain. This 

approach has both practical and theoretical problems in multiple dimensions. The theoretical problem 

is relatively minor, as explained below: that a fully calculated state cannot be reused if chosen in a 

different generation than that for which it was first calculated, as the optimal choice depends upon 

the number of generations remaining in which choices can be made. The practical problem is far more 

serious: with one dimension, it was possible to cover all of state-space \^-ith an initial course grain for 

the first iteration. With even two-dimensions, the choice space is too large to consider such an approach 

(even if it is assumed that reasonable a priori bounds could be placed on the disequilibrium dt). -A.s 

such, it would be necessary to move the bubbles repeatedly until an initial starting point is found. Not 

only is there is no reason to believe that the state-spaces chosen in later generations will be relevant 

when the bounds are moved for earlier generations, the recursive nature of the problem (in which earlier 

choices define the choice-space for later generations) strongly suggests that the old states will not be 

rele\'ant. 

The secirch is not stopped at the boundaries of bubbles; insteadinstead new bubbles are created in 

accordance with the routine illustrated in Figure 3.12 and indexed. 

An additional problem is created in solving the theoretical problem in the case where a fixed number 

of generations is used: both the optimal behavior from a state and the value of choosing that state are 

dependent upon the number of generations remaining. Unfortunately, it is necessciry to use the fixed 

horizon to v^date the edgorithm, as this is the only problem for which known results exist. Accordingly, 

the generation for which a state was calculated is stored in its bubblette, and the bubblette recalculated 

if Ccdled for a different generation. This behavior will be removed for the infinite horizon, with the 

result that the infinite horizon problem is computationally less expensive to solve than the finite. 
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5.2.7 Plateaus in the state space 

One of the difficulties of any numeric algorithm is handling plateaus in the objective function. This 

issue did not arise in the single-dimsional model, even for fifteen generations. However, it appears in 

models with as few as five generations, and is pronounced by eight generations, in the two-dimensional 

problem. 

With four or fewer generations of breeding, the algorithm finds the same solutions as routines based 

upon Dekkers' equations. There is a slight difference for five; for eight, the choices made are noticeably 

different. To check the algorithm, the state selected after four generations of Dekkers' eight-generation 

solution was used as the starting point for the algorithm, leaving it to solve the final four. Not only 

did the algorithm choose the same final four steps as it originally selected, but it was revealed that the 

value of those steps was slightly better than those found by Dekkers, using iterative methods and the 

partial ancJj-tical solution. Output is included in Appendix C. 

When discounting is incorporated, the plateaus become a less serious problem. Part of the plateau 

problem comes from accumulated rounding through successive choices. The intervening choices carry 

no weight in the objective function, and thus there is no reason for the algorithm to pick a "better" 

intermediate state that reaches the same final state. As an economic problem in discounted present 

v'alue, however, it is not the optimal genetic progress, but the present value, that matters; no distinction 

is made between the worth of two solutions with the same present value. 

5.2.8 Ridges in the state space. 

The second common problem with numeric routines is ridges through the space of the objective 

function which may be missed or stepped over by the routine. The cdgorithm has been observed 

successfully handling such ridges in the two-dimensional case. 

The algorithm works by maidng successfiilly better approximations in each iteration, more closely 

approximating a continuous search space with each iteration.. As such, the number of additional bubbles 

created should drop over time. However, for some planning horizons, it was found that after an initial 

drop in the number of bubbles consumed, computation slowed while large numbers of bubbles were 

used. Furthermore, the choices made changed significantly at these times, finally settling at points 

past those even considered on the prior iteration. Inspection of the individual steps tciken and states 

evaluated showed that the algorithm was working properly: in the prior iteration, all neighbor states 

of the selected points were indeed inferior. The finer grain, however, allowed consideration of a point 

between those previously considered, which was not only superior, but led to a sequence of improvements 
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beyond the prior seaxch-space. 

5.2.9 Discounting and changing horizon in two-dimensions 

The discounted models and those with infinite and changing horizons are not considered in the 

two-dimensional space. No new issues of interest are presented compared to the one dimensional case . 

These issues are therefore left for the four-dimensional case. 
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CHAPTER 6 FOUR DIMENSIONS: THE GENETIC PROBLEM WITH 

DIFFERENTIAL SELECTION 

A basic assumptioa for the one-dimensional and two-dimensional cases was that equal numbers of 

males and females were used for breeding in each generation. In practice, however, it is possible, and 

usually desirable, to breed earh male, or " sire, " to more than one female, or "dam."' To accommodate 

this approach, model changes are minor. The gametes from the selected males and the selected females 

are treated separately, as if each gender bred independently. 

Previously, the fraction Q of the entire population was bred to produce the next generation. Instead, 

a proportion Q will be bred, but with separate cmd Q'^, representing the respective fractions of the 

entire population to be bred, cind with the identity 

+Q'' 
^  = Q  (6 .1 )  

and noting the ratio 

Q- = ̂  (6-2) 

of the quantities of males and females to be bred. Given this, [4.16] becomes 

Q" = fup'l + f2t^pta-pt) + f^ti^-p'l) (6.3) 

Q' = fitpi + fit^pta-pt) + f^t{i-pi) (6.-1) 

with the superscripts "d" and "s" indicating demis and sires, respectively 

In the past, Q'' was identically one in all cases, and Q® and Q'^ were each equal to half of Q. 

Translating equations such as [5.2] to address the sire's gcimetes will generally require replacing Q with 

2Q^2Q'^, and labeling the choice variables fmt as and state variables for the next generation, such 

as ptj^i with counterparts such as 

The key to understanding the model is to observe that the allowed choices for selection among the 

two genders is completely independent of the choice made for the other gender: pairs are 

chosen sepeirately for each gender, representing not the offspring, but the gametes contributed by the 
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respective geader. The actual state of the next generation is the average of the states of the gametes 

contributed by the two genders. Nonetheless, the choice space is still four-dimensional, es'en though it 

consists of a pair of two-dimensional subspaces, and it is the full choice that determines the avjiilable 

choices in the next generation. 

Care must be taJcen to handle the fact that there are now four rather than three types of creatures 

because the Bb hybrid is now distinguishable from the bB hybrid, as different selection intensity upon the 

genders results in different values for Ag and inferior ailele. However, there 

is no way to inspect the offspring to determine whether it is in fact Bb or bB, and it is thus necessary-

to combine the two for selection purposes. N'ote that this is distinct from the approach used by Dekkers 

in unpublished work, where the two groups were treated as distinct to achieve theoretical results. 

-A-dditionally, the actual distribution of the heterozygotes is bimodal, being a nested distribution. The 

first distribution is a Bernoulli, choosing between Bb and bB, while the second is a normal distribution. 

The two normal distributions have the same variance but different means. For computational and 

mathematical simplicity, the nested distribution will be taken as a single normai distribution . with 

appropriate modeling of the multi-modal solution left for future research.^ 

Due to the differences it will not be possible to directly compare the results of the four-dimensional 

case with the Dekkers results. However, the states should still be "reasonablj'"' close to those of Dekkers, 

though Dekkers' reported values should be superior, due to the ability to distinguish between the two 

types of heterozygotes. While such a distinction is of interest to theoretical quantitative genetics, it has 

no economic relevance, as it is impossible to distinguish between the two groups of heterozygotes in an 

actual animal herd unless full information on the parentage of each animal is avciilable, and alt least 

one of the parents was a homozygote of known t\-pe. Additionally, it is still possible to perform a check 

on the algorithm by setting the number of males and females equal; with this setting, it should achieve 

the same results as the two-dimensional algorithm, albeit more slowly. 

6.1 Changing the model 

Given that the genders are treated independently, producing gametes which are then combined 

with those of the other gender, changing the prior equations takes nothing more than compensating 

for the different fraction of the popidation used and introducing superscripts for some of the variables. 

Equations [5.2] and [5.3| then become 

fact, it is only bimodeil after the initial round of selection, with the multi-modality increasing geometriccilly. The 
question would be how to Jiccurately model the nested distribution as a single distribution. 
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.4.^ H.£4-1 ~ 
f u P f  -H +  fitPt (1  -P t )  k (.-ig.t + + igtO-) 

fuP^  +f2 tPt  (1  -  Pt)  

and 

-•i; b.t-hl — 
fitPt (1 ~ Pt) h + -'^b.t + i^t^) -r /It (1 — P t ) '  (--^fr.t + 

1 - /itpt - fitpt (1 - Pt) 

equation [4.17] becomes 

pI+i = ^ {fltPl + /ItPt (1 - Pt)} 

Tlie sires' disequilibrium cilso remains similar. 

(6.5) 

(6.6) 

(6. 

_ ^  1  P t ( l -P t )  J  = dt - — —-dt 
iQ' -pUi (l-P?+i) 

+ 
4(5" 

Pi 
3 ~it 

Pt( l -P t )  (1-Pt )"  
- Z 2 t  —  —  ;;—-Z3t (6.8) 

Pl+i "  P?+i  (1 -P?+l ) ' "  (1-Pt+i )  

with the equations for the dams being identical except for the new superscripts. 

Selection will tvijically be more intense among sires thcin dams, since fewer need be chosen, and the 

increases in both frequency cind disequilibrium will be more pronounced among the sires, the two axe 

averaged (each cuiimal has one paxent of each gender, regardless of the proportion of sires and dams) 

to find the %'alues for the entire population and the progeny: 

it+i = Ast-rl — 

= 2 - 2 -^b.t+l) 

= 2 - -^it+l) + 2 ('^S.t + L - -^b.t+l) 

— 2 (^t+1 (6.9) 

frequency directly averages as well. 

Pt+i = ^ {pUi  + P f + i )  

and the transition rule for At+i remains unchcinged from [5.181 

Pt (1  -  Pt)  [ f iA +  -Jl fO-]  +  (1  -  Pt)"  
A t ^ , - A , =  

Q' ( i -p?+i )  
+ ̂pt+idt+i - 2ptdt 

and 
T T _ -^t+i - Af^.1 - At 

-T-t+i — At — 1 

(6.10) 

(6.11) 

(6.12) 
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6.2 Changing the pattern of search 

As before, a state will be accepted as cin optimum if it is superior to all of its neighbors, cind 

progress is made by exajnining all neighbor-states. With two-dimensions, there were only 3" — 1, or 

eight, neighbors for each state, cind no particular attention was paid to the order of the search. However, 

with four dimensions, there are 3"* — 1, or eighty, neighbors for each state, increasing the dividends for 

giv^g careful thought to the order of search. Each step in a direction that can be ruled out as unlikely 

prior to computation saves the wasting of not only the step itself, but more importantly it avoids the 

calculation of a cascading stream of futile searches with potentially 81' searches in the generation i 

generations after the present. 

Working from known theoretical results from Dekkers' unpublished research, it is to be expected 

that in most cases, selection on the major gene will be more intense thcin under mass selection-that 

is, that the gene frequency will increase at a more rapid rate for the dams, and even more rapidly for 

the sires. As such, the search is reordered so that an increase in both frequencies is the first state 

considered, followed by an increase for the sire and none for the dam, followed by a search only for the 

dam. 

In the same vein, to av-oid the other seventy-seven steps and the steps descending from those steps, 

the check for the possibility of increasing frequency is made immediately upon the initicd step; if the 

state with the default change in disequilibrium is not a valid transition, the nearest disequiUbrium for 

the selected frequency is immediately checked. Furthermore, if the state is not chosen as a step, the 

information is saved for the individual checks for the sires and dams alone. 

The result of the two changes is a search that, considering four generations, solves its initial iteration 

in less than a minute rather than taking severed minutes without the reordered seaxch, again using one 

processor of a dual Pentium 333.. 

6.3 Adding a cache 

The four-dimensional state is separable in the sense of [3,9], in that the states chosen for males 

and females are independent of each other-while the states chosen will be combined to form the next 

generation, the state chosen for the sires in no way constrains the state for the dams, and vice versa. 

As such, for any sub-state or sub-choice the value of is the same, regardless of the 

choice made for the dams. Similarly, the value of is independent of the choice made for the 

sires. Note, however, that as Qs and Qd are distinct, knowing for a successor subs-state gives no 
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information about and vice-versa. Also recall that these values are dependent upon the current 

state and reflect the gain achieved in moving to the successor state. Accordingly, while there is value 

in temporarily caching these values, there is no gciin in saving the various values once a successor state 

is chosen, as they are unique to that paxticular present state. 

6.4 Psurticil additivity 

To this point, all genes considered have been "fully additive." That is, having a gene twice is exactly 

twice as good as having it once. Many genes of interest, however, are only partially additive, with two 

copies superior to a single copy, but not of twice the ^'alue. Such genes require only a simple change to 

the model, with the contribution from the major gene changing from 

Gmajor = (2pt " 1) O (6.13) 

as in [2.10], to 

Gmajor = (pf + pf - l) a + (pj + pf - 2pfpf) d (6.14) 

where rf is a non-centraUty parameter, and the three types are valued as —a, d. and a. respectively, for 

zero, one, or two copies. The only changes required cire in the evaluation of fitness, not the algorithm 

itself. 
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CHAPTER 7 OPTIMAL BREEDING WITH THE ESTROGEN 

RECEPTOR LOCUS 

Advances in biotechnology in recent years have permitted the identification of specific genes in ani­

mals, and the quantification of the effects of these genes. A gene of particular interest to swine producers 

is the Estrogen Receptor Gene, (ESR) which, among other effects, increases litter size [Rothschild 94|. 

Litter size is of direct economic impact, as it allows the producer larger output from the same breeding 

stock, the same output from fewer breeding animals, or a combination of the two. Furthermore. Utter 

size is a trait with poor heritability; it is a difficult trait to enhance by conventional methods, as it has 

poor heritability; very little of the observed value is passed from a sow to her daughters. 

Determining whether or not the animal has the desirable allele of the gene and how many copies 

of that allele is not without cost. To do so necessitates that ezich animal be tested, incurring both a 

direct cost of testing and a royalty to the developer of the test. It is not clear a priori that testing is 

always of value. The analysis which follows is an appUcation using the ESR. Throughout the analysis, an 

assumption of a test cost of three dollars will be used, along with a royalty from fifteen to twenty dollars. 

Both figures are drawn from private correspondence with Max Rothschild of Iowa State University. 

The following will assume an enterprise with a breeding herd kept at a constant size, with all pigs 

born either kept to breed within the herd or sold as feeder pigs. Financial gains from selection would be 

significantly greater if the sows just below the cutoff point for breeding were sold as breeding stock, but 

this is left for future research. Finally, some of the initial examples assume completely random mating 

for simpHcity, but this is noted when used. 

Assuming a total cost of twenty dollars for the test, an average litter size of ten, an existing gene 

frequency of one-half, a marginal economic value of thirteen and one-half dollars [Guidelines] per addi­

tional live pig, and an additive effect of .31 additional pigs bom Uve drawn from unpublished reseeirch 

of Short, et al [Short], choosing a sow with the gene two copies of the gene has cin expected return of 

2 X .31 X $13.50 = $8.38 (7.1) 

as compared to a sow with no copies, approximately one-half of the cost of the test. On the other hand. 
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if each, sire is bred five times, it will have the same number of offspring with or without the ESR, as 

only sows have litters, but will pass the gene to five daughters that breed, on average, for a return after 

two generations (when the sires daughters breed) of 

2 X 5 X .31 X $13.50 = S41.9Q (7.2) 

slightly exceeding the cost of two tests. However, if multiple sires must be tested to choose one with 

the gene, the benefit is then outweighed by the cost. 

Nonetheless, it may still be worthwhile to test. It is not only the present generation, but each 

successive generation that is improved. Thus with a generation period of eighteen months, an annued 

discount rate of 8% for a generational discount rate of approximately 12%, with each sow breeding only 

once with an average Litter size of ten, a selected homozygote sire expects, on average, to have five 

daughters (one from each sow) and one-half son (one-tenth from each sow)breed. The daughters will 

pass on the sire's gene one-half the time to their own breeding daughters and to one-tenth a breeding 

son each, while the sons pass on to five daughters and cinother half son, indefinitely. The result is 

an additional five copies of the gene among the sows that breed in each generation from the second 

generation onwaxd. 

Considering the sire as generation zero, the additional present value of a homozygous sire with the 

ESR, as compared to a homozygous sore without the gene . is 

5 X .31 X S13.50 1 
pv = 5 > 

(1  +  r ) -  t ^ ( l+r ) '  

S20.925 

r  ( 1  - I -  r ) ~  
= $139 (7.3) 

a significant gain. Note that this understates the gain, as the one-half of a breeding son and five 

breeding daughters come from the assumption that that animals are randomly selected to breed: as the 

offspring will have higher estimated breeding \'alues on average than those from sires without the ESR, 

the descendants of sires with the gene will be more likely to breed than others in the herd, and the 

actual number of breeding offspring will be larger. 

Finally, the gene frequency should be considered. If the gene is initially present in half the population, 

then, designating the presence of the gene as B and the absence as 6, it is to be expected that one in 

every four is a superior homozygote with the gene twice (BB), and one in ever>' two is a homozygote 

with the gene once {Bb and bB), and that one in every four is an inferior homozygote (66). This would 

mean an average of eight tests-four firom the sires that would otherwise breed and four from those 
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who would not-at a total cost of $160 to find an inferior homozygous sire to replace with a superior 

homozygotic sire. Below this frequency, it will be necessary to test more from the not to be bred, and less 

from the to be bred pools to find a pedr of sires to exchange, and vice versa when above this frequency. 

Eight is the minimum expected number of tests to make a selection when drawing at random-at a gene 

frequency of 50%, there is a one-fourth chance of finding the desired t}T)e on any draw, requiring cin 

expected four draws each from the pools tentatively selected to be bred and not bred. As the frequency 

increases past 50%, the number that must be drawn to find an inferior homozygote increases faster than 

the number that must be drawn to find a superior homozygote decreases. 

Formally, the expected number that must be tested to find a superior homozygote among sfres that 

would not otherwise breed is 

"bb = 
P-

wiiile the expected number to find an inferior homozygote that would otherwise breed is 

<b- ^ 
(1 -P) 

The minimum can be found by differentiating the sum and setting the derivative to zero: 

-2 2 
0 — _o  1 3T  (  '  -6)  

PmiTL  ( 1—Pmtn )  

or that 

Pmin  — I  Pmin  { '  - '  )  

thus 

Pmin  — .0  (  '  -S )  

Xote that Equation [7.3| show^s that with the origincd assumptions, the expected return of S139 will 

not cover the expected testing cost of $160. However, if each sow has multiple litters, fewer sires are 

needed and it is possible that the cost may be covered or exceeded-two sows per sire yields a return of 

$278, easily covering the cost. Additionally, the $139 figure is understated. 

On the other hand, the testing of sows can never cover the cost. As described above, each sow has on 

average one daughter who breeds, and this daughter will inherit half of the mother's genetic material. 

Similarly, the daughter will produce on average one grcuiddaughter to the original sow with one fourth 

of the original genetic material, and so fourth. Even without discounting, this means that replacing an 

inferior homozygotic dcun with a superior homozygote yields an expected total of two breeding sows 

and a total of four extra copies of the superior gene. Even assmning that all of these occur in a manner 

such that they result in a superior homozygote breeding instead of cm. inferior homozygote, this results 
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in only .62 additional pigs bom alive, for a value of $7.80. To cover the minimal cost of $160, each sow 

would have to have more than twenty litters just to cover the cost of testing.. 

Given these results, it would tentatively appear that only the sires should be tested, as the dams do 

not spread the gene to enough dependents to justify the cost of testing. 

7.1 Estimated breeding value eind the ESR 

In the previous chapters, it was assumed that the estimated breeding value (EBV) could be easily 

observed from phenotypic traits of the animal. With the ESR, however, it is by definition impossible 

to observe the trait in the animal until after breeding, because the phenotypic trait of interest is the 

number bom alive (NBA). With dams, it is at least possible to maJce an observation after a litter is 

bom. With sires, however, it is not possible to make the direct observation until their female offspring 

breed. 

Fortunately, there are other methods by which cin EBV can be obtziined. While the animal has 

provided no direct information, its parents, grandparents, older siblings, and their relatives do yield in­

formation. By combining these, it is possible to msike an estimate for an unbred animal. In unpublished 

work, Dekkers has found that such estimates have an accuracy of .32, yielding an effective heritability 

h- of .32" or .1024. This figure will be used throughout. 

7.2 Choosing which animals to breed with truncation selection 

The optimal firaction of each group to breed CcUi be found firom the algorithm in the prior chapter 

and is independent of the cost of testing. Given the truncation points for the three groups, animals 

may be divided by estimated breeding \'cilue into three categories: those who will reproduce regardless 

of genotype, those for whom the genotj-pe will be required, and those who will not breed regardless of 

genotype. There is no point in testing the first and third groups. 

While the genotype of individual animals cannot be known without paying for testing, it is assumed 

that the overall gene frequency of the initial population is known ahead of time. This knowledge, along 

with the choices made, whether optimal or mass selection, allow the calculation of the overall gene 

frequency in all subsequent generations. 

The tmncation point on EBV for optimal selection will be lowest for the homozygote with the gene, 

and highest for the homozygote without. Letting Xmt represent the tmncation points for the three types. 

aJid fmt the corresponding fractions selected, only a.nimais that would quEilify if of the first genotype. 
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but not if of the third, need to be tested. As optimal selection selects superior homozygotes that would 

be rejected with mass selection and rejects inferior homozygotes that would have been selected with 

mass selection, the animals that must be tested are those whose observable values axe between these 

tnmcation points. Recalling that 

=  ( X m t )  ( 7 . 9 )  

or 

and that 

^ m t  — 0 ( 1  f m t )  

dt = AB,t — 

(7.10) 

(7.11) 

relationships can be written for animals of one tjpe that cire at the tnmcation point for ajiother type. 

For example, for a superior homozygote with the same EBV as an inferior homozygote at the tnmcation 

point, the relation 

,  2 A B , t + a  ,  2 . 4 . 6 . 4  —  a  / - l o i  -c i ' t  H =  arsf  H (< .12)  

holds, yielding 

X i ' t  -  X 3 t  —  

— X3t — 2 

2--le.t ~ 2.4(,,j + 2a 

c/t + a .13) 

as the truncation point for tj-pe one cinimals that must be tested. The portion of these animals which 

must be tested is the difference between the fractions corresponding to the optimal truncation point and 

the point in [7.13|. Writing such relationships for each of the three types, namely the difference between 

the fractions that meet the EBV cutoffs for superior and inferior homozygotes, and multiplying by the 

respective portions of the total population represented by each tj-pe, it cein be observed by substituting 

[7.13] and the corresponding equation for the heterozygote into [7.9], and the resulting expressions into 

the population constraint [4.16] that the fraction of the male population that muse be tested is 

=  { /u-  1-$-^  jp?  

+  I  1 - ^Xu + - 1 - ^X3J - —— ^ I  2pt (1 - P t )  

+  1  1 - $ - ^  ( x u + 2 ^ i ^ )  ( 7 . 1 4 )  

where the fmt and Xmt are the optimal values. 
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7.3 Assumptions and parameter values 

Relj-ing on the values estimated by Short, et al [Short], and those pro%'ied by the National Swine 

Improvement Federation [Guidelines], a weighted estimate of the value of the gene will be used. Each 

dam will be assumed to have three litters, though all three will be treated as occurring at the time 

of her second Utter for purposes of discounting. The model becomes too cumbersome if the Utters axe 

treated as separate events, while not providing any additional information. Furthermore, the three 

Utters can be taJcen as a single large Utter, distributed with a mean equal to the sum of the three 

mecins, and a staxidard deviation calculated by assuming that the three Utters are independent. This 

sUghtly overstates the actucd. varicince, but by a very small amount for the given values of h-. Table [7.1| 

reproduces values from Tables I and 2 in the aforementioned paper, as weU as the weighted averages. 

The base interest rate and generation times represent a consensus value from experts in the De­

partment of Economics, at Iowa State University, and are 8% and eighteen months, respectively. These 

values are also reproduced in Table 7.1. 

7.4 Modification of the algorithm 

The four-dimensional cdgorithm of the previous chapter was designed with the assumption that 

optimization would be performed for both sexes. It is already known, however, that the testing of dams 

can never cover its cost. Accordingly, the calculations relating to dams are disabled, and dams are 

always chosen by mass selection. It is also necessary to modify the search order to accommodate this 

change, as only the first two-dimensions are searched. -4dditionaUy, as optimization of the herd for a 

single trait precludes consideration of other traits, the breeding program is Umited to five generations, 

with the improvements gained by the fifth generation considered permanent, and kept for aU future 

generations. 

7.5 Results 

Using the output included in Apendix C, a five generation breeding program with mass selection is 

found to have a present value of $554.07 per breeding sow in the herd. Optimal selection improves this 

to S586.2I, an improvement of $32.14. 

The algorithm was nm again with a one percent increase in the interest rate (to 18.08% ), with the 
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Table 7.1 Estimated parameters of the ESR gene 

Expression First Parity Second parity Value 

Additive .39 .31 .1337 

Dominance .05 .14 .11 

XBA 9.2 10.3 9.93 

(t:^ba 3.4 3.5 3.47 

weight 1. 2. 

heritability of selection index .1024 

Initial frequency .5 

Sires Selected 1.34% 

Dams selected 6.7% 

Discount rate 8.0% 

Generation time 18 months 

Discount/gen 12.0% 

Table 7.2 Results from optimal breeding of the ESR gene 

Interest Rate Mass Selection Value Optimal Selection Value Difference Improvement 

18.00% $554.07 $586.21 $32.14 5.80% 

18.18% $546.56 $578.21 \ $31.65 5.89% 
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results axe shown Ln Table 7.2. The merest rate elasticity of gains from production Ccin be estimated as 

^ ~ '~l% 

= —1.55 (7.15) 
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CHAPTER 8 SUMMARY AND CONCLUSIONS 

8.1 Analytic methods 

The problem, of maximizing genetic progress over a finite number of generations for a quantitative 

trait with an identifiable Quantitative Treiit Locus or major gene has previously been shown to have 

a partial analj-tic solution [Dekkers 98]. The problem has control equations moving both forward and 

backwards in time, and the solution requires the value of one of the Lagrangian multiphers for the final 

generation, which is known from the actucd parameter that the shadow value represents. Having set 

this parameter, the problem can be solved recursively by standard iterative computational methods. 

Any problem beyond maximizing the value of the final generation becomes an economic problem. 

Particularly, any question other than "Vhat is the best that CcUi be achieved for this generation" must 

involve two or more generations of animals, which in turn requires a choice as to how to weight the 

response achieved in each generation, an economic question. 

Of particular economic interest is the problem with an infinite planning horizon, in which the present 

discounted value of all future generations is considered. The limiting value of the Lagrangian multiplier 

for the infinite horizon model is known, and is in fact the same as in the finite. Unfortunately, as seen 

in §4.2, it is not possible to recurse backwards in time from this value while the other equations move 

forwards in time. If the value of any of the multipliers were known in any period, all others could be 

calculated, but four multiphers appear in the state equation for any generation, three from that period, 

and one from the next. For any finite number of periods, the equations contain exactly one multiplier 

too many, and the infinite horizon problem Ccumot be partially solved cinalytically as the finite horizon 

model was. 

8.2 Dynamic programming and bubbles 

The literature is completely devoid of optimal control and dynamic programming solutions for 

recursive equations in continuous variables that cannot be approximated as linear-quadratic. The 
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genetic problem, however, is a high order multinomieil-for n periods, it has a component of order 2n in 

2n variables, as well as components conteiining the standard normail density of functions of the inverse 

of the stcindard normal cumulative distribution function. 

There is a body of dj-namic programming literature which discretizes the problem and appHes 

successively more precise approximations to successively smellier search spaces. However, these methods 

require advcince knowledge of the seaxch space so that it can be divided, and consider contiguous search 

spaces, which are generally compact or transformations of compact spaces. Not only do the valid 

search spaces for the genetic problem not meet these criteria, but the search space in each generation 

is determined by the choice in the prior generation. Furthermore, allocating computer storage even for 

pointers to the entire search space is beyond the memory capacity of current machines. 

The entire search space is not of interest, however. In fact, only a very small subset of the total 

space is of interest for any given generation. A new method of dynamic programming is developed 

herein that creates subsets of the total space, or "bubbles." These bubbles take the form of hypercubes 

whose dimension is the number of independent state variables in each stage. Each of these bubbles is 

divided into "bubblettes, " each of which represents a potential state. 

An initial trial solution is selected, and bubbles are centered around the states chosen for each 

generation or stage. The problem is then solved recursively by querying the starting state for its 

value. This state in turn queries the value of the first step of the trial solution, and all states or 

bubblettes adjacent for their values, which in turn query the later generations. When values better 

than the tentative solution are found, the corresponding bubblette becomes the tentative solution, and 

che search begins again about that bubblette. When the initial quer>' is fincilly returned, the grain, or 

distance between states, is halved, and the algorithm is nm again, using the prior result as the starting 

point. 

Once a bubblette is calculated, its vcdue is stored, so that it (and its successors) need not be 

recalculated if queried agcun from a different predecessor bubblette. The value of a bubblette is the 

value of the successor it chooses, discounted if appropriate, and the value gained ia making the transition 

to that state. That is. the bubblette in the next stage with the highest value is not necessarily the one 

chosen, as another bubblette less valuable in its owm right may have a greater transitional gain. 

The animcd breeding problem is solved by turning the "real" choice variables, the fraction of each 

major gene type selected, into fimctions of the state transitions. The major gene frequency and the 

level of gametic phase disequilibrium axe the state variables used, while the polygenic breeding \ulue 

is teiken as a consequence of the choices made. This is done by making the change in the polygenic 
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breeding value the transitional value between generations, allowing its calculation at any time as the 

initial value plus the changes along path to the current state. 

The infinite horizon problem is solved by considering that there is a finite cost of testing the cinimals, 

halting the algorithm when the cost of testing exceeds the present value of its returns. The returns 

from testing are the difference between the present value of the optimal path and the present %^alue of 

mcddng the default choice, mass selection. 

Using the values polygenic and major gene values from Dekkers' work, the algorithm successfully 

matched the theoretical results in one dimension (disequilibrium ignored) and two dimensions per 

generation for fifteen generations (the longest horizon considered) and for four dimensions per generation 

for five generations, the longest horizon considered. Optimcil selection shows minimal gain over mass 

selection for longer periods. The algorithm successfully traversed ridges and navigated plateaus in 

state-space, the two primary' difficulties faced in numericeil algorithms. 

Duplicating existing results with the algorithm is primarily of interest to verify that the algorithm 

performs properly. Having matched these results, the algorithm was also used to find the maximal 

values for the discounted one-dimensional model, and the infinite horizon one-dimensional model. The 

one-dimensional model was used as an intermediate step in the development of the full methods, it 

is substantially faster yet contains all of the elements of the multi-dimensional model; only the function 

for the value of states changes. With the algorithm complete, it was used to evaluate an actual gene, 

the Estrogen Receptor Gene, or ESR, in swine. 

8.3 The cache used for the bubbles 

One of the problems ciddressed is that it is not known in advance which portions of the search space 

will be used prior to nmning the algorithm-or even before nmning em iteration within the algorithm. 

Another is that it is entirely possible that the portions considered will not fit into memor>'. Finally, as 

new bubbles are created, a method of finding them if used later is required. 

The problems axe simultaneously solved by using a cache with an indexing system, which is the most 

important contribution of this method. The bubbles axe hypercubes, and their centers axe placed upon 

predefined points (with an exception for the trial solution). This allows computationally cheap integer 

arithmetic to calculate where the center of the bubble housing any state would be if the bubble existed. 

Many times when a state is needed, there is an initial guess as to which bubble holds that state's 

bubblette, assuming that it exists. One possibility is that it is in the initial trial solution for the next 

generation, while Euiother is that it is in the same bubble as an already-referenced bubblette. In fact. 
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the latter case is the reason for indexing bubbles instead of bubblettes-since a state is identified as 

"best"' by hav-ing a better value than all of its adjacent states, there is a high probabiUty that the 

neighbors of a bubblette will be referenced immediately after that bubblette. By passing the bubble 

of the neighbor bubblette just referenced to the indexing routine as a hint, an expensive seairch caji 

frequently be avoided. 

While such hints will frequently avoid an expensive search, this is not always the case. To search 

the cache of bubbles, the index is first calculated, and the index of bubble centers checked for a match. 

This can be done by a sequential check, but it is faster to use intrinsic functions to find the location of 

the minimal value of the absolute value of the difference between the index array and the target value. 

With either method, if a match is found, its location is returned and the routine exits. 

If the bubble is not in the cache, it must be created. If ciny unallocated bubbles remain a^'ailable, 

the new bubble is simply created, and the location returned. If the cache is full, however, the least-

recently referenced bubble is removed, and its location given to the new bubble. This is accomplished 

by giving each instance of the quer>- function a successively greater number and storing this number for 

the bubble whenever it is referenced. This increases the chance, but does not guarantee, that bubbles 

in a superior search region %vill be available if needed again. 

Finally, it should be noted that while the cache is generally considered as a single entity available 

for all generations, there appear to be significant performcince gcdns for the genetic problem in reserving 

sections of the cache for each generation. This is because a large search in a later generation has the 

potenticd of removing all of the values calculated for earlier generations, requiring the recursive search 

to be repeated. However, this type of segregation of the cache may not cilways be available and may 

actually slow the search if the sections allocated to individual generations are too small. 

8.4 The ESR gene 

The algoritm found that with an 8% annual interest rate, the improvements from optimal selection 

are nearly 6% greater than those firom mass selection. This result is based upon the assumption that 

the offspring are sold as feeder pigs. This improvement roughly covers the cost of testing for the major 

gene, cmd is not an economically viable solution. Selling a portion as breeding stock would substantially 

increase the value of gains from selection, and likely cover the costs of testing. 
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8.5 Conclusions for the dynamic programming method 

New classes of problems are opea to computationai solution. Particularly, unimodal multivariate 

fimctions may be optimized over large search spaces in the absence of cmalytical solutions. The uni-

modality requirement could be relaxed if the search space were partitioned prior to seaxch. Of particular 

interest are recursive problems with long horizons, such as the genetic breeding problem, macroeconomic 

optimal growth problems, ajid repeated gzimes with continuous choice variables. 

The curse of dimensioncility is pushed back within this class of cases. Rather than considering the 

entire search space, noncontiguous regions within the space are indexed, avoiding the computational 

cost of indexing individual states-and more importantly, of conducting a secirch through such states.. 

The primarj- advance from this research comes from the observation that while only a tiny fraction 

of the search space will be examined, the states near an examined point Eire also likely to be examined. 

Constructing bubbles with adjacent states, and implementing a workable search algorithm so that these 

bubbles can be found, makes the search through previously calculated states practical. 

Rather thaji ten billion possible states, a genetic problem in four dimensions taking fifteen genera­

tions requires as little as 15^^ or less than 50,000 states, and may be calculated in an afternoon on a 

333 ^'IHz Pentium II. This figure is for an arbitrcwily fine grain. 

Finally, although more comphcated problems can be solved by this method than by older dynamic 

programming methods, the number of dimensions will remain the limiting factor-not due to memor\-

limitations, as in the past, but by the computational costs for searching the index of bubbles. 

8.6 Conclusions for the discounted genetic model 

The dynamic progrcimming method allows determination of the optimal economic use of genetic 

information and includes the decision as to whether and when the v'alue of the information justifies its 

cost. 

While the optimal genetic progress possible is not significantly greater than the progress possible 

without the identification of genes, save for very short breeding programs, it is found that the present 

discounted value of optimal progress is significant, and justifies the payment of large royalties to find 

the underlying information. 
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8.7 Future research 

The work provides a wide variety of opportimities for future research. The djuamic programming 

method itself is amenable to optimization, particularly with regard to search pattern and indexing 

methods. Additionally, it could be modified to take numerical derivatives allowing longer steps than 

the state-by-state search currently used, which could conceivably improve performance by orders of 

magnitude. 

Many of the large number of identified genes in commercial livestock may be optimally utihzed with 

this method. Multiple genes could be simultaneously selected, rather than the single gene considered 

here. Rather than the bounds used herein, Bayesian methods could reduce the number of animals which 

must be tested. 

Finally, the discounted breeding problem is mathematically the same as the optimal growth prob­

lem of macroeconomics and the method could be used to solve more comphcated growth models not 

amenable to analytic solution, as well as problems from game theory with repeated play and continuous 

choice spaces. 
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APPENDIX A GLOSSARY 

allele 

The pcirticulax variant of the gene found at the QTL, such as b and B. 

breeding value 

The average effect on the trait in question of all genes that a parent passes on to offspring.. 

CDF 

Cumulative distribution function. 

diploid 

Having two chromosomes. All animals, and many plants, are diploid. 

dominance 

A gene effect in which the first copy of the gene has a greater effect on the trait than the second. 

Dominance of zero means that the first and second copies are of equal value, full dominance indicates 

that the second gene is of no additional value, and overdominance means that the second gene is actually 

hannfiil. 

ESR 

The Estrogen Receptor Gene. Among other effects, the presence of this gene leads to larger litters 

for swine. 

fixed cost 

A cost that caimot be avoided in an enterprise, and does not vary. 
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genetic phase disequilibrium 

When different tnincation points axe used for the genotypes, the result is a different truncation point 

for the polygenes in each group. In the next generation, the polygenes will have different means and 

variances in the different group. This creates a negative correlation between the major and polygenes 

known as Gametic Phase Disequilibrium. 

genotype 

The actual genetic status of the orgcuiism for a given locus. For example, Bb. 

genotypic selection 

Genotypic selection considers both the phenotj-pic ajid genotypic values. A value of / =  g + h - { P — g )  

is used, where P is the phenotypic \'alue, g the genotypic value, and hr the heritability. 

heterozygote 

In a diploid organism, a heterozygote for a given iocus has a two different alleles at the locus in 

question. 

heritability 

The fraction of phenotypic vcunation in a trait that is due to genetics. 

homozygote 

.\n organism with two of the same allele at the locus in question. 

intensity 

A measure of how strongly the major gene's contributions considered. 

locus 

A point on a chromosome where a gene is located. 

major gene 

A gene with a large effect. It is assumed that the major gene can be identified, by QTL or other 

methods. 
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mass selection 

Also phenotj-pic selection. Orgajiisms are selected to reproduce based solely upon their own pheno-

tj-pic v'alue for the trciit. 

PDF 

Probabihty density function. 

phenotype 

The obser\'able trait. For example, the weight of an animal. 

polygenes 

Polygenes cannot be identified, but are seen only by their combined effect on phenotype. It is 

assumed that each of the polygenes has a small effect compared to the whole and to the major gene. 

Quantitative Trait 

quantitative trait is one which takes a quantitative rather than qualitative value. Mendel's peas 

were qualitatively either wrinkled or not; they were one of the two types. A quantitative trait would 

instead be a measure of the height of the peas: a value in the range of three to six inches, for example, 

with the intermediate \3Iues being possible. 

QTL 

Quantitative trait locus, the locus that controls or ciffects a quantitative trait. 

truncation point 

-A. cutoff point on the selection criterion for selection. .AJl creatures above this point breed, and those 

below do not. 

truncation selection 

Selection by accepting all animals above the truncation point for breeding, and none below. 

variable cost 

A cost that changes depending upon the decisions made. 
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APPENDIX B VARIABLE NAMES AND DEFINITIONS 

The following variables have the following meeining unless otherwise specified:d 

Variable \Iecining 

a . the value of each allele of the major gene 

.-1 polygenic breeding value 

-4. 1 estimated polygenic breeding value 
1 

6 the inferior allele 

^mt weight used for genotype m selected in generation t 

B the breeding value. Also used to indicate the superior allele. 

bestValO function returning the best possible value that could be reached for a state, as well 

as the choices made from that state forward 

bubbletteAtO fimction that finds the bubble and bubblette corresponding to the argument, cre­

ating the bubble if necessary 

Ct the choice space at time t 

c cost, typicaily of testing. Also used for choice 

d dominance effect 

dt disequihbrium at time t 

A the granularity separating states 

E Environmental and random effects. Also the expectation operator 

EQSHIFTO Fortran intrinsic routine to shift matrix contents 

et Lagrangian multipher used for population constraint 

F fixed cost; also the cumulative distribution function; also cui alternate objective 

function 

fmt the fraction of the population in generation t of type m 

<t> the probability density function of the standard normal distribution 
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The cumulative distribution function of the standard nornicil distribution 

G breeding value 

9 genotypic value for the identified major gene 

Lagrangian multiplier used for chauige in At 

Ht the Hamiltonian 

h- heritability of the trciit 

I breeding intensity 

L Lagrangian for optimal control treatment 

A Lagrangian multiplier used for change in pt 

m an indicator for genotype 

nabla, the Laplacian operator. Returns the gradient, or vector deri\-ative. 

of a function with respect to the variables in question 

the mean of the distribution 

P" the critical \-alue for gene frequency above which testing cannot be profitable | 

Pt the frequency of the major gene in generation t 

P the phenotypic value | 

TT profit 

Q the fraction of animals to be bred to produce the next generation 

R revenue • 

r the discount rate 

P discount factor. />=l/(l+r) 

S the state of the system 

a variance, tj-pically of the polygenic distribution 

T the final period. Also used as a function naxne for testing cost. 

t time 

totGenerations toted number of generations used during the current iteration of the model 

V generic objective fimction 

PV* the present value of making default choices forever. 

^mt the tnmcation point for genotype m in generation t 

^mt the height (density) of the standard normal at X m t  
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APPENDIX C SELECTED BREEDING PROGRAMS 

Output from several different breeding programs, both from the Eilgorithm developed herein and 

dekkers program, follow. The variable acunes displayed axe the same as within the body, save that 

"AB-s" in Dekkers' output refers to .-ig ^ with the variations for the dams and inferior allelles being self 

explanatory-. The variable dt in the algorithm's output has the same value as Ae.t — ^b.i in Dekkers' 

output. Finally, save for Figure C.L, Dekkers' output is normalized such that Go is 0. and the value of 

Go from the algorithm must be subracted from Dekkers' Gt to compare those results to those of the 

algorithm. 
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parskipO 
Gen p G Abar fl f2 f3 

1 0. .08000 -0 .224999994039536 0 .00000 0, .500295 0 .327620 0, .185734 
2 0, .08406 0 .207228153944016 0.41520 0, .428348 0 .292564 0, .181085 
3 0. .12777 0 .644088208675385 0 .83020 0, .380323 0 .268445 0 .176079 
4 0, .18062 1, .085383772850037 1 .24507 0, .346372 0 .250374 0. .170677 
5 0. .24178 1, .530712127685547 1 .65982 0 .321152 0 .235861 0. .164811 
6 0, .31006 1 .979507923126221 2 .07448 0, .301616 0 .223486 0 .158368 
7 0, .38402 2 .431057214736938 2 .48904 0, .285942 0 .212349 0 .151197 
8 0. .46200 2 .884529113769531 2, .90353 0, .272983 0 .201804 0, .143082 
9 0. .54213 3, .338995933532715 3.31793 0. .261977 0 .191297 0. .133716 

10 0. .62241 3 .793446540832520 3, .73224 0. .252411 0 .180264 0. .122658 
H 0. .70074 4. .246827125549316 4, .14646 0. .243907 0 .167976 0. .109237 
12 0. .77496 4. . 698039531707T64 4. .56056 0. .236185 0 .153314 0. .092416 
13 0. .84291 5. .145965099334717 4. .97451 0. .229023 0 .134196 0. .070581 
14 0, .90244 5. .589468955993652 5. .38825 0. .222212 0 .105829 0. .041521 
IS 0, .95144 6. .027318954467773 5. .80160 0. .215555 0 .052549 0. .007065 
16 0, .98777 6. .457773208618164 6. .21389 0. .000000 0 .000000 0. .000000 

Figure C.l Dekkers' fifteen generation results for one state variable 

Grain: 0.000024414 
Besc ficaess in iteracioa 10 is 6.4577858 
Gen G P Abar fl 12 f3 

0--0 .225000000000000 0 .05000 0 .00000 0 .500242 0 .681628 0 .148471 
1 0 .207228082507341 0 .08406 0 .41520 0 .428348 0 .624505 0 .120162 
2 0 .644088447762011 0. . 12776 0, .83021 0. .380334 0. .592696 0. .081093 
3 1 .085383905090603 0. .18062 1. .24508 0. .346388 0. .577214 0, .026590 
4 1, .530714849018840 0. .24177 1, .65983 0. .321164 0. .574245 0, .000000 
5 1. .979512353203580 0. .31006 2 .07448 0. .301628 0. .582620 0, .000000 
6 2 .431065606860210 0. .38403 2, .48905 0. .285941 0. .603053 0. .000000 
7 2 .884538601883760 0. .46201 2. .90353 0. .272977 0. ,638110 0, .000000 
3 3 .339003137831710 0. .54214 3. .31793 0. .261973 0. .692868 0, .000000 
9 3 .793453953873290 0. .62241 3. .73225 0. .252406 0. .776677 0, .000000 

10 4, .246831473037630 0. .70073 4. .14647 0, .243906 0. .907153 0, ,000000 
11 4, .698042689383100 0. .77495 4. .56057 0. .236183 1. .000000 0, ,000000 
12 5, .145969079352711 0. .84290 4. .97452 0. .229028 1. .000000 0. .000000 
13 5, .589476982308782 0. .90244 5. .38826 0. .222214 1. .000000 0. ,000000 
14 6, .027330196175890 0. .95144 5. .80161 0. .215550 1. .000000 0. .000000 
15 6. .457785764324584 0. .98777 6. .21390 0. .000000 0. .000000 0, ,000000 
Best Steps are 
3443 5233 7398 9903 L2700 15730 18924 22206 25494 28702 31742 34525 36964 38971 40459 
Gainof 0.000000004996758 

used 55 bubbles 

Figure C.2 The algorithm's fifteen generation results for one state variable without 

discounting 
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Grain: 0.0125CXXKK) 
5.000000000000000E-002 0.000000000000000 O.OOOOOOOOOOOOOOO 0.000000000000000 

Best fitness in iteration 1 is 22.0902263 
Gen G P PrVal Abar fl f2 f3 
0. -0, .225000000000000 0. .05000 22 . 18339 0. .00000 0. .810151 0 .746834 0. . 140748 
1 0. .210880400647841 0, .12500 20, .74581 0. .39838 0. .645396 0, .502086 0. . 104600 
2 0. .665703620980871 0. .25000 19, .29686 0. .79070 0. .471601 0 .376133 0. .052400 
3 1, .136052927601020 0. .40000 17, .75458 1. . 18605 0. .381509 0 .318578 0. .000000 
4 1. .613684589765970 0. .56250 16. . 13414 1. .58243 0. .305808 0, .307771 0. .000000 
5 2. .085352612453610 0. .70000 14. .41340 1. .98535 0. .268111 0, .350599 0. .000000 
6 2. .547784419502014 0. .81250 12, .63872 2. .39153 0. .238247 0, .477341 0. .000000 
7 2. .996643387908770 0. .88750 10, .82985 2. .80289 0. .223050 0, .769336 0. .000000 
8 3, .435650957312640 0, .93750 9. .03369 3. .21690 0. .210780 1.000000 0. .000000 
9 3. .865587116246480 0, .96250 7, .28084 3. .63434 0. .205221 1. .000000 0. .000000 

10 4, .290779460831090 0, .97500 5, .61503 4. .05328 0. .205156 1, .000000 0. .000000 
11 4, .715414105590331 0. .98750 4. .07660 4. .47166 0. .200000 1, .000000 0. .000000 
12 5. .135357012325640 0. .98750 2, .69861 4. .89161 0. .200000 1, .000000 0. .000000 
13 5. .555299919060950 0. .98750 1. .52779 5. .31155 0. .200000 1, .000000 0. .000000 
14 5. .975242825796260 0. .98750 0. .61060 5. .73149 0. .200000 1, .000000 0. .000000 
15 6. .395185732531570 0. .98750 0. .00000 6. .15144 0. .000000 0, .000000 0. .000000 

Figure C.3 The algorithm's fifteen generation results for one state variable with 

discounting 

Grain: 0.000024414 
5.000000000000000E-002 0.000000000000000 0.000000000000000 0.000000000000000 

Best fitness in iteration 10 is 61.8135735 
Gen G p PrVal Abar fl f2 f3 

0--0, .225000000000000 0, .05000 41, .51211 0, .00000 0. .732054 0 .910998 0, . 123684 
1 0, .210997709997639 0, .11277 41, .70580 0, .40461 0. .565813 0 .748802 0, .054583 
2 0, .660548273643315 0, .20530 42, .00742 0, .80790 0. .451603 0 .669880 0, .000000 
3 1, .121667404894771 0, .32083 42. .41333 1, .21125 0. .373659 0 .644285 0, .000000 
4 1, .589420161377710 0, .44712 42. .92982 1, .61586 0. .319594 0 .664779 0, .000000 
5 2, .057828114151910 0, .57058 43, .57563 2, .02254 0. .281860 0 .736252 0, .000000 
6 2. .521870293598501 0, .68042 44. .38205 2, .43166 0. .255635 0 .873739 0, .000000 
7 2, .978632980520620 0, .77087 45. .39062 2. .84320 0. .237583 1, .000000 0, .000000 
8 3, .427333404611830 0, .84099 46. .65022 3. .25684 0. .225268 1, .000000 0, .000000 
9 3, .868627597450170 0, .89292 48. .21481 3. .67217 0. .216933 1, .000000 0.000000 

10 4, .303831140035680 0. .93013 50. .14243 4. .08877 0. .211347 1, .000000 0. .000000 
11 4, .734379919192000 0. .95623 52. .49536 4. .50627 0. .207594 1, .000000 0. .000000 
12 5, .161500238088692 0, .97424 55. .34081 4. .92438 0. .205079 1, .000000 0. .000000 
13 5. .586139457391170 0, .98655 58. .75208 5. .34287 0. .203338 1, .000000 0. .000000 
14 6. .008900469620680 0, .99475 62. .80976 5. .76152 0. .202106 1, .000000 0. .000000 
15 6, .429727856944810 0, .99998 67. .60327 6. . 17974 0. .000000 0. .000000 0. .000000 
Best Steps are 
4619 8409 13141 18314 23371 27870 31575 34447 36574 
38098 39167 39905 40409 40745 40959 
Gainof 0- 208442715681670 

used 44 bubbles 

Figure C.4 The algorithm's fifteen generation results for one state variable with 

an infinite horizon 
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Grain: 0.000024414 
5.000000000000000E-002 0.000000000000000 O.OOOOOOOOOOOOOOO 0.000000000000000 

Best fitaess In iteration 10 is 62.5053882 
Gen G p PrVal Abar fl f2 f3 

0--0 .225000000000000 0, .05000 38 .33760 0 .00000 0 .769096 0. .955718 0 .118874 
1 0 .211071898260419 0, .11829 38 .38513 0 .40193 0, .591118 0. .772122 0 .039455 
2 0 .662835596831901 0, .22197 38 .52733 0 .80185 0 .466976 0, .686045 0 .000000 
3 1 .128209273144270 0, .35369 38 .75464 1 .20137 0, .382517 0, .663755 0 .000000 
4 1, .601277581167480 0. .49893 39. .06863 1. .60181 0. .324390 0. .702924 0, .000000 
5 2. .074667057843020 0. .64119 39. .48524 2. .00407 0. .284203 0. .826228 0, .000000 
6 2. .542076586173710 0. .76731 40. .03498 2. .40842 0. .256366 1. .000000 0, .000000 
7 2. .999550015885251 0. .87002 40. .76041 2. .81454 0. .236865 1. .000000 0, .000000 
8 3. .444997017973820 0. .94719 41. .71424 3. .22140 0. .222911 I. .000000 0, .000000 
9 3. .872923985374291 0. .99998 42. .98102 3. .62294 0. .200003 0. . 137502 0, .089861 

10 3. .788940474319701 0. .99998 46. .88177 3. .53895 0. .200002 0. .137501 0, .089861 
11 3. .704955378451760 0. .99999 51. .06637 3. .45496 0. .200001 0. .137501 0. .089860 
12 3. .620969193000320 0. .99999 55. .55467 3. .37097 0. .200001 0. .137501 0.089860 
13 3. .536982258449060 0. .99999 60. .36786 3. .28698 0. .200001 0. .137500 0. .089860 
14 3. .452994808886610 1. .00000 65. .52850 3. .20300 0. .200000 0. .137500 0, .089860 
15 3. .369007005251730 I. .00000 71. .06062 3. .11901 0. .000000 0. .000000 0, .000000 
Stfltch to fliass selection occiirs at generation 9 

Best Steps are 
4845 9092 14487 20436 26263 31429 35636 38797 40959 

Gainof 0.343696902227329 

Figure C.5 The algorithm's fifteen generation results for one state variable with 

test costs 

OPTIMAL SELECTION 
Gen ps pd G AB-s Ab-s AB-d Ab-d A' -bar Hu-BB Ku-Bb Hu-bB Hu-bb 
0 0. .0500 0, .0500 0, .00000 0. .000 0. .000 0, .000 0, .000 0, .0000 0. .250 0, .000 0. .000 -0, .250 
1 0. .1123 0, .1123 0, .43583 0. .132 0, .211 0. .132 0. .211 0, .4047 0. .514 0. .343 0, .343 0, .173 
2 0. .1776 0. .1776 0. .86908 0. .336 0, .417 0. .336 0. .417 0 .8053 0. .921 0. .753 0, .753 0, .584 
3 0. .2514 0. .2514 1, .30555 0. .548 0, .621 0. .548 0. .621 1 .2048 1. .346 1 .  .169 1. .169 0, .991 
4 0. .3388 0. .3388 1, .74698 0. .759 0, .823 0. .759 0. .823 1 .6026 1. .767 1 .  .582 1. .582 1, .396 
5 0. .4406 0. .4406 2, .19328 0. .966 1, .025 0. .966 1. .025 1 .9980 2. .182 1. .991 1. .991 1, .800 
6 0. .5572 0. .5572 2, .64332 1. .171 1, .225 1. .171 1. .225 2 .3897 2. .591 2. .396 2 .396 2. .201 
7 0. .6899 0, .6899 3, .09555 1. .372 1, .424 1. .372 1. .424 2. .7756 2. .993 2 .796 2 .796 2 .598 
8 0. .8543 0. .8543 3, .55040 1. .560 1, .659 1. .560 1. .659 3 .1483 3. .369 3. .219 3 .219 3. .069 
used 33 bubbles 

Figure C.6 Dekkers' eight generation two dimensional results. 

Best fitness in iteration 10 Is 3.3252275 
Gen G p diseq Abar fl f2 f3 
0--0. .225000000000000 0, .05000 0 .000000 0 .00000 0. .560408 0 .439579 0. .173783 
I 0. .210796833960690 0. .11141 -0, .078554 0. .40509 0. .333719 0, .312250 0. .169752 
2 0. .644005203295331 0. . 17526 -0, .080710 0. .80637 0. .292406 0, .279240 0. .162149 
3 1. .080231894039040 0. .24673 -0, .071689 1, .20687 0. .287917 0, .262912 0. .149356 
4 1. .521547107384570 0, .33195 -0, .064454 1, .60557 0. .278012 0, .249712 0. .131337 
5 1. .967298638930641 0. .43005 -0, .058554 2. .00228 0. .273826 0. .235871 0. . 103839 
6 2. .416956433397012 0. .54227 -0, .054582 2. .39582 0. .275888 0, .213484 0. .061538 
7 2. .869385559632381 0. .67059 -0. .053561 2. .78409 0. .312714 0, .126095 0. .033799 
8 3. .325227491620394 0. .84239 -0, .099433 3. . 15403 0. .000000 0, .000000 0. .000000 

Best Steps are 
3927 6178 8697 11701 15159 19115 23638 29694 

-2769 -2845 -2527 -2272 -2064 -1924 -1888 -3505 
Gainof 0.000000360401403 

used 119 bubbles 

Figure C.7 The algorithm's eight generation two dimensional results 
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Grain: 0.000007092 0.000007092 
Best fitness in iteration 12 is 4.1988626 
Gen G P diseq Abar fl f2 f3 

0-•0, .225000000000000 0. .05000 0, .000000 0, .00000 0. .507241 0. .393941 0, .178734 
1 0, .209926298210333 0.09990 -0, .066986 0, .40998 0. .319906 0. .292885 0, .177904 
2 0, .642068298367023 0. .14765 -0. .069632 0, .81824 0, .286508 0. .267599 0. .173985 
3 1, .076093866379310 0. .19961 -0, .063071 1, .22629 0. .277289 0. .255240 0. .167640 
4 1. .513348399949510 0. .25914 -0, .056993 1, .63378 0. .271415 0. .245402 0. . 159502 
5 1. .953953905333980 0. .32670 -0. .052440 2, .04060 0. .265996 0. .236248 0. .149286 
6 2. .397586615871551 0. .40178 -0. .049256 2, .44669 0, .261466 0. .227086 0. . 135889 
7 2. .843805193462730 0. .48395 -0. .047405 2. .85183 0. .256428 0. .217328 0. .117874 
8 3. .291678516606351 0. .57166 -0. .046525 3. .25585 0. .254797 0. .202910 0. .094630 
9 3. .740733377874474 0. .66476 -0. .048114 3. .65835 0. .317775 0. . 125389 0. .032790 

10 4. .198862558203410 0. .84186 -0. .098604 4. .02793 0. .000000 0. .000000 0. .000000 
Best Steps are 

14086 20818 28145 36538 46064 56651 68236 80604 93731 118701 
-9445 -9818 -8893 -8036 -7394 -6945 -6684 -6560 -6784 -13903 

Cainof 0.000000862160000 
used 1000 bubbles 

Figure C.8 The algorithin's ten generation two dimensional results 

OPTIMAL SELECTION 
Gen ps pd G AB-s Ab-s AB-d Ab-d A--bar Mu-BB Hu-Bb Hu>bB Hu-bb 
0 0. .0500 0, .0500 0. .00000 0, .000 0. .000 0, .000 0. .000 0. .0000 0. .250 0.000 0. .000 -0, .250 
1 0. .2077 0. .1039 0. .58288 0, .239 0. .329 0. .160 0. .226 0. .5300 0. .648 0.465 0. .489 0, .306 
2 0. .3226 0, .2161 1. .16300 0, .520 0. .596 0. .429 0, .497 1. .0533 1. .199 1.016 1. .025 0. .843 
3 0. .4801 0, .3525 1. .75154 0, .798 0. .854 0. .703 0. .762 1. .5684 1. .751 1.560 1. .557 1, .366 
4 0. .6416 0, .5621 2. .35003 1, .073 1. .108 0. .967 1. .017 2. .0741 2. .289 2.090 2. .075 1, .875 
5 0. .8773 0, .8103 2. .96408 1, .321 1. .428 1. .214 1, .312 2. .5672 2. .786 2.633 2. .643 2, .490 

Figure C.9 Dekker's five generation results for four state variables 

Grain: .000288595 .000288595 .000288595 .000288595 
Best fitness in iteration 8 is 2.7424660 
Gen G ps ds pd dd Abar fl f2 f3 f4 f5 f6 
0 .2250000000000000 .05000 .000000 .05000 .00000 .00000 .243758 .146354 .020854 .298442 .257699 .156719 
1 .3548393617487033 .22684 -.095236 .07792 -.03925 .52865 .084213 .071556 .017946 .214476 .228828 .142772 
2 .9383821315621663 .33593 -.075612 .20721 -.06003 1, .05260 .065405 .057460 .010886 .211591 .217513 .122510 
3 1, .5287148319930500 .48571 -.055988 .35180 -.05628 1, .56934 .064124 .045101 .000397 .229871 .208083 .074187 
4 2, .1267658427762200 .66666 -.028571 .54573 -.05108 2 .07367 .070474 .014908 .002053 .299480 .109813 .026997 

5 2 .7424659645277600 .88368 -.107646 .81759 -.09783 2 .56715 .000000 .000000 .000000 .000000 .000000 .000000 

Besc Steps are 
786 

-330 
270 

-136 

1164 
-262 

718 
-208 

Ciujiof 
used 

1683 
-194 
1219 
-195 

.000128267595050 
137 bubbles 

2310 
-99 

1891 
-177 

3062 
-373 
2833 
-339 

Figure C.IO The algorithm's five generation results for four state variables 

Grain: .000144298 . 000144298 . 000144298 . 000144298 
Best fitaess la iteration 9 is 2.7528003 
Gen G ps ds pd dd Abar fl f2 f3 f4 f5 f6 
0 -. 2250000000000000 .05000 .000000 .05000 .00000 .00000 .243027 .146494 .020841 .570878 .242854 .157527 
1 .3547001093435740 .22698 -.095236 .07778 -.04329 .52851 .089937 .045861 .021096 .325039 .212177 .126286 
2 .4313171204277074 .38041 -.092762 .32385 -.11749 .50525 .072018 .035640 .015918 .284581 .180872 .104774 
3 .5019678562657361 .56466 -.090809 .50288 -.11624 .48508 .056170 .026892 .011623 .242529 .149402 .083823 
4 .5904584751569420 .73560 -.089595 .68433 -.11610 .48548 .045300 .021085 .008860 .209133 .125272 .068293 
5 .7033443137813200 .85839 -.089056 .82517 -.11677 .53245 .000000 .000000 .000000 .000000 .000000 .000000 

Best Steps are 
1573 
-660 

539 
-300 

Caiaof .010334353992258 
used lOOO bubbles 

Figure C.ll Sample output in which the solution was flushed from the cache 
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Actual mass selectioa solution: 
Gen G P diseq Abar prval fl f2 f3 
0 0. .7425 0. .50000 0. .000000 0. .00000 0 .00000 0, .015055 0, .013678 0.011281 
1 19, .7896 0. .53094 -0. .097469 18. .76863 0 .00000 0, .014888 0, .013566 0.011221 
2 38. .7867 0. .56039 -0, .165964 37, .50606 0 .00000 0 .014747 0, .013466 0.011161 
3 57, .7432 0. .58839 -0, .213643 56, .22039 0 .00000 0, .014627 0, .013374 0.011101 
4 76. .6664 0. .61500 -0, .246383 74, .91777 0 .00000 0, .014522 0, .013291 0.011041 
5 95, .5619 0. .64025 -0. .268447 93, .60296 0 .00000 0, .000000 0, .000000 0.000000 

Grain: 0.000039063 0.000039063 
Best fitness in iteration 9 is 
Gain of 0.178556487891171 

99.3146521 

Gen G P diseq Abar prval fl f2 f3 
0 0, .7425 0, .50000 0. .000000 0, .00000 0, .00000 0 .014897 0. .013097 0.012601 
I 19, .7132 0, .52406 -0. .079570 18, .75367 0, .00000 0 .015429 0, .013171 0.011545 
2 38, .7372 0, .55512 -0. .159297 37, .50267 0, .00000 0 .013267 0. .013483 0.013516 
3 57 .5063 0, .56609 -0. . 159727 56, .17540 0, .00000 0 .038490 0, .001739 0.001242 
4 78 .6409 0, .77047 -1. .248906 75. .56057 0 .00000 0 .022611 0. .000000 0.000007 
5 101 .4601 0 .89035 -3, .434023 97, .58621 0 .00000 0 .000000 0. .000000 0.000000 

Best Steps are 
13416 
-2037 

bubblesused 

14211 
-4078 

4 

14492 
-4089 
83 

19724 
-31972 

118 

22793 
-87911 

62 250 

Figure C.12 The algoritlmi's five generation results for the ESR without discount­

ing 

Actual aass selection solution: 
Gen G P diseq Abar prval fl f2 f3 

0 0.7425 0, .50000 0, .000000 0, .00000 207 .50904 0 .015055 0 .013678 0.011281 
1 19.7896 0, .53094 -0, .097469 18, .76863 150 .84701 0 .014888 0, .013566 0.011221 
2 38.7867 0, .56039 -0, .165964 37, .50606 99 .10726 0 .014747 0, .013466 0.011161 
3 57.7432 0, .58839 -0, .213643 56, .22039 54, .64985 0 .014627 0, .013374 O.OlllOl 
4 76.6664 0, .61500 -0, .246383 74, .91777 20 .40908 0 .014522 0, .013291 0.011041 
5 95.5619 0, .64025 -0, .268447 93, .60296 0, .00000 0 .000000 0, .000000 O.OOOOOO 

Grain: 0.000078125 0.000078125 
Best fitness in iceracion 8 i 210.6651033 
Gain of 0 .010618119251262 
Gen G P diseq Abar pnral fl f2 f3 
0 0, .7425 0, .50000 0, .000000 0, ,00000 215 .18129 0, .018007 0, .012252 0.011180 
1 19, .9536 0, .54516 -0, .147578 18, .80569 159 .27280 0, .017396 0, .011573 0.012148 
2 39, .0441 0, .58445 -0, .244844 37, .55449 108 .42993 0, .015692 0, .011784 0.013544 
3 57, .9455 0, .61000 -0, .274062 56, .23906 65 .14989 0, .035967 0, .000059 0.000077 
4 80, .5304 0, .81500 -2, .188984 77, .11968 26, .01465 0, .020208 0, .000000 0.000001 
5 103, .6136 0. .91000 -4, .564453 99, .61944 0, .00000 0, .000000 0, .000000 O.OOOOOO 

Best Seeps are 
6978 

-1889 
bubblesused 

7481 7808 10432 11648 
-3134 -3508 -28019 -58425 

2 1 0 2 31 

Figure C.13 The algorithm's five generation results for the ESR with discounting 
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Actual mass selection solution; 
Gen G P diseq Abar prval ft f2 f3 
0 0 .7425 0, .50000 0, .000000 0. .00000 554 .07094 0, .015055 0, .013678 0.011281 
1 19 .7896 0 .53094 -0, .097469 18. .76863 472 .19984 0, .014888 0, .013566 0.011221 
2 38 .7867 0, .56039 -0. . 165964 37, .50606 379 .16484 0, .014747 0, .013466 0.011161 
3 57, .7432 0, .58839 -0, .213643 56. .22039 273 .39358 0. .014627 0, .013374 0.011101 
4 76 .6664 0 .61500 -0. .246383 74. .91777 153 . 11438 0, .014522 0, .013291 0.011041 
5 95. .5619 0, .64025 -0. .268447 93. .60296 16. .32479 0. .000000 0. .000000 0.000000 

Best fitness in iteration 4 is 555.8123138 
Gain of 0 .134687684422261 
Gen G P diseq Abar prval fl f2 f3 
0 0, .7425 0, .50000 0. .000000 0. .00000 586. .21038 0. .020452 0. .013146 0.006948 
1 20. .2666 0, .57625 -0. .225000 18. .84102 507, .71405 0. .016361 0. .013227 0.008523 
2 39. .3808 0. .62250 -0. .308750 37. .56780 419, .07823 0. .022853 0. .009369 0.001150 
3 59. .0221 0. .73375 -0. .575000 56. .29300 317, .45287 0. .019855 0. .005153 0.010153 
4 78. .3745 0. .81000 -0. .827500 75. .08830 200, .82823 0. .020458 0. .000000 0.000002 
5 : 101. .9947 0. .91000 -3. .327500 98. .00047 33. .28498 0. .000000 0. .000000 0.000000 

Best Steps are 
461 

-180 
498 

-247 
587 

-460 
648 

-662 
728 

-2662 

bubblesused 31 250 

Figure C.14 The algorithm's five generation results for the ESR with an infinite 

horizon 

peuTskipO 
Actual mass selection solution: 
Gen G P diseq Abeir prval fl f2 f3 
0 0, .7425 0. .50000 0. .000000 0. .00000 546 .55699 0, .015055 0. .013678 0, .011281 
1 19. .7896 0, .53094 -0. .097469 18. .76863 466, .05792 0, .014888 0. .013566 0, .011221 
2 38, .7867 0, .56039 -0. .165964 37. .50606 374, .45456 0. .014747 0. .013466 0, .011161 
3 57. .7432 0, .58839 -0. .213643 56. .22039 270 .16612 0. .014627 0. .013374 0, .011101 
4 76. .6664 0, .61500 -0. .246383 74. .91777 151, .40872 0. .014522 0. .013291 0. .011041 
5 95. .5619 0, .64025 -0. .268447 93. . 60296 16. .16316 0. .000000 0. .000000 0. .000000 

Grain: 0.001250000 0.001250000 
Best fitness in iteration 4 is 548.2789083 
Gain of 0.132701402541670 
Gen G p diseq Abar prval fl f2 f3 
0 0. .7425 0. .50000 0. .000000 0. .00000 578 .20761 0. .020452 0. .013146 0, .006948 
1 20. .2666 0, .57625 -0. .225000 18. .84102 501 .07174 0. .016361 0. .013227 0.008523 
2 39. .3808 0. .62250 -0, .308750 37, .56780 413 .85278 0. .022853 0. .009369 0, .001150 
3 59. .0221 0, .73375 -0. .575000 56. .29300 313 .70202 0. .019855 0. .005153 0, .010153 
4 78. .3745 0, .81000 -0. .827500 75. .08S30 198 .60344 0. .020458 0. .000000 0, .000002 
5 101. .9947 0, .91000 -3. .327500 98. .00047 32 .95543 0. .000000 0. .000000 0. .000000 

Best Steps are 
461 498 587 648 728 

-180 -247 -460 -662 -2662 
bubblesused 1 0 0 31 250 

Figure C.lo The algorithm's five generation results for the ESR with a differential 

interest rate so as to estimate elasticity 
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